• 제목/요약/키워드: non-dominated sorting genetic algorithm (NSGA)

검색결과 49건 처리시간 0.045초

Multi-objective optimization design for the multi-bubble pressure cabin in BWB underwater glider

  • He, Yanru;Song, Baowei;Dong, Huachao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.439-449
    • /
    • 2018
  • In this paper, multi-objective optimization of a multi-bubble pressure cabin in the underwater glider with Blended-Wing-Body (BWB) is carried out using Kriging and the Non-dominated Sorting Genetic Algorithm (NSGA-II). Two objective functions are considered: buoyancy-weight ratio and internal volume. Multi-bubble pressure cabin has a strong compressive capacity, and makes full use of the fuselage space. Parametric modeling of the multi-bubble pressure cabin structure is automatic generated using UG secondary development. Finite Element Analysis (FEA) is employed to study the structural performance using the commercial software ANSYS. The weight of the primary structure is determined from the volume of the Finite Element Structure (FES). The stress limit is taken into account as the constraint condition. Finally, Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) method is used to find some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. The best solution is compared with the initial design results to prove the efficiency and applicability of this optimization method.

Multi-Objective Shape Optimization of an Axial Fan Blade

  • Samad, Abdus;Lee, Ki-Sang;Kim, Kwang-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2008
  • Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm(NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes(RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

Optimization of Data Placement using Principal Component Analysis based Pareto-optimal method for Multi-Cloud Storage Environment

  • Latha, V.L. Padma;Reddy, N. Sudhakar;Babu, A. Suresh
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.248-256
    • /
    • 2021
  • Now that we're in the big data era, data has taken on a new significance as the storage capacity has exploded from trillion bytes to petabytes at breakneck pace. As the use of cloud computing expands and becomes more commonly accepted, several businesses and institutions are opting to store their requests and data there. Cloud storage's concept of a nearly infinite storage resource pool makes data storage and access scalable and readily available. The majority of them, on the other hand, favour a single cloud because of the simplicity and inexpensive storage costs it offers in the near run. Cloud-based data storage, on the other hand, has concerns such as vendor lock-in, privacy leakage and unavailability. With geographically dispersed cloud storage providers, multicloud storage can alleviate these dangers. One of the key challenges in this storage system is to arrange user data in a cost-effective and high-availability manner. A multicloud storage architecture is given in this study. Next, a multi-objective optimization problem is defined to minimise total costs and maximise data availability at the same time, which can be solved using a technique based on the non-dominated sorting genetic algorithm II (NSGA-II) and obtain a set of non-dominated solutions known as the Pareto-optimal set.. When consumers can't pick from the Pareto-optimal set directly, a method based on Principal Component Analysis (PCA) is presented to find the best answer. To sum it all up, thorough tests based on a variety of real-world cloud storage scenarios have proven that the proposed method performs as expected.

Multi-objective topology and geometry optimization of statically determinate beams

  • Kozikowska, Agata
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.367-380
    • /
    • 2019
  • The paper concerns topology and geometry optimization of statically determinate beams with arbitrary number of supports. The optimization problem is treated as a bi-criteria one, with the objectives of minimizing the absolute maximum bending moment and the maximum deflection for a uniform gravity load. The problem is formulated and solved using the Pareto optimality concept and the lexicographic ordering of the objectives. The non-dominated sorting genetic algorithm NSGA-II and the local search method are used for the optimization in the Pareto sense, whereas the genetic algorithm and the exhaustive search method for the lexicographic optimization. Trade-offs between objectives are examined and sets of Pareto-optimal solutions are provided for different topologies. Lexicographically optimal beams are found assuming that the maximum moment is a more important criterion. Exact formulas for locations and values of the maximum deflection are given for all lexicographically optimal beams of any topology and any number of supports. Topologies with lexicographically optimal geometries are classified into equivalence classes, and specific features of these classes are discussed. A qualitative principle of the division of topologies equivalent in terms of the maximum moment into topologies better and worse in terms of the maximum deflection is found.

처짐과 무게를 고려한 주물 프레임의 다중목적 근사최적설계 (Approximate Multi-Objective Optimization of Robot Casting Considering Deflection and Weight)

  • 최하영;이종수;박준오
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.954-960
    • /
    • 2012
  • Nowadays, rapidly changing and unstable global economic environments request a lot of roles to engineers. In this situation, product should be designed to make more profit by cost down and to satisfy distinguished performance comparing to other competitive ones. In this research, the optimization design of the industrial robot casting will be done. The weight and deflection have to be reduced as objective functions and stress has to be constrained under some constant value. To reduce time cost, CCD (Central Composite Design) will be used to make experimental design. And RSM (Response Surface Methodology) will be taken to make regression model for objective functions and constraint function. Finally, optimization will be done with Genetic Algorithm. In this problem, the objective functions are multiple, so NSGA-II which is brilliant and efficient for such a problem will be used. For the solution quality check, the diversity between Pareto solutions will be also checked.

스케줄링 문제를 위한 멀티로봇 위치 기반 다목적 유전 알고리즘 (Multi-Objective Genetic Algorithm based on Multi-Robot Positions for Scheduling Problems)

  • 최종훈;김제석;정진한;김정민;박장현
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.689-696
    • /
    • 2014
  • This paper presents a scheduling problem for a high-density robotic workcell using multi-objective genetic algorithm. We propose a new algorithm based on NSGA-II(Non-dominated Sorting Algorithm-II) which is the most popular algorithm to solve multi-objective optimization problems. To solve the problem efficiently, the proposed algorithm divides the problem into two processes: clustering and scheduling. In clustering process, we focus on multi-robot positions because they are fixed in manufacturing system and have a great effect on task distribution. We test the algorithm by changing multi-robot positions and compare it to previous work. Test results shows that the proposed algorithm is effective under various conditions.

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

반응표면법 및 비지배 분류 유전자 알고리즘을 이용한 취배수문의 응력 및 변형 최적화 (Optimization of Stress and Deformation of Culvert Gate by using RSM and NSGA-II)

  • 김동수;이종수;최하영
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.27-32
    • /
    • 2013
  • A valve is a marine structure that is subjected to multiple seawater loads. Therefore, it is necessary to define the kind of loads applied to it to confirm whether the structure has sufficient strength. In this research, we aimed to find the optimal solution for the stress and deformation of valves under various loads. We first selected design variables and implement a finite element analysis according to changes in the thickness of each component of a valve based on a central composite design. Next we developed a regression model of the response surface. Using this model, we calculated the optimal objective value based on NSGA-II. Finally, to confirm the correspondence between the optimal objective value and the real FEM value, we compared the optimal result and structural analysis result to verify the performance of NSGA-II.

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

Robust multi-objective optimization of STMD device to mitigate buildings vibrations

  • Pourzeynali, Saeid;Salimi, Shide;Yousefisefat, Meysam;Kalesar, Houshyar Eimani
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.347-369
    • /
    • 2016
  • The main objective of this paper is the robust multi-objective optimization design of semi-active tuned mass damper (STMD) system using genetic algorithms and fuzzy logic. For optimal design of this system, it is required that the uncertainties which may exist in the system be taken into account. This consideration is performed through the robust design optimization (RDO) procedure. To evaluate the optimal values of the design parameters, three non-commensurable objective functions namely: normalized values of the maximum displacement, velocity, and acceleration of each story level are considered to minimize simultaneously. For this purpose, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solutions. The torsional effects due to irregularities of the building and/or unsymmetrical placements of the dampers are taken into account through the 3-D modeling of the building. Finally, the comparison of the results shows that the probabilistic robust STMD system is capable of providing a reduction of about 52%, 42.5%, and 37.24% on the maximum displacement, velocity, and acceleration of the building top story, respectively.