• Title/Summary/Keyword: non-dissipative

Search Result 65, Processing Time 0.024 seconds

A design procedure of dissipative braces for seismic upgrading structures

  • Bergami, A.V.;Nuti, C.
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.85-108
    • /
    • 2013
  • The research presented in this paper deals with the seismic protection of existing frame structures by means of passive energy dissipation. A displacement-based procedure to design dissipative bracings for the seismic protection of frame structures is proposed and some applications are discussed. The procedure is based on the displacement based design using the capacity spectrum method, no dynamic non linear analyses are needed. Two performance objective have been considered developing the procedure: protect the structure against structural damage or collapse and avoid non-structural damage as well as excessive base shear. The compliance is obtained dimensioning dissipative braces to limit global displacements and interstorey drifts. Reference is made to BRB braces, but the procedure can easily be extended to any typology of dissipative brace. The procedure has been validated through a comparison with nonlinear dynamic response of two 2D r.c. frames, one bare and one infilled. Finally a real application, on an existing 3D building where dissipative braces available on market are used, is discussed.

Design of Non-Dissipative Snubber for Current-Fed Half-bridge Converter Operating at Duty Ratio above 0.5 (0.5보다 큰 시비율로 동작하는 전류원 하프-브릿지 컨버터의 무손실 스너버 설계)

  • 강정일;한상규;윤현기;김정은;윤명중;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.405-412
    • /
    • 2002
  • Since the switching device of current-fed bridge-type topology suffers from him-off voltage spikes associated with larger energy than that of voltage-fed topology, a high-efficiency non-dissipative snubber is considered essential. However, the complicated operation and the capricious performance according to various conditions make the design of the non-dissipative difficult. In this paper, the non-dissipative snubber employed in the current-fed half-bridge converter operating at a duty ratio above 0.5 is completely analyzed and the design considerations are discussed. Some design examples and the experimental results are provided to confirm the analysis and design presented in this paper.

Soft Switching Forward Converter Using Non-Dissipative Snubber (무손실 스너버 적용 소프트 스위칭 Forward 컨버터)

  • 김은수;김태진;최해영;조기연;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.256-260
    • /
    • 1997
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved soft switching forward converter is proposed. The proposed converter is constructed by using non-dissipative snubbers in parallel with the main switch and output diode of the conventional forward converter. Due to the use of the non-dissipative snubbers in the primary and secondary, the proposed converter achieves zero-voltage and zero-current switching for all switching devices without switching losses and output diode recovery losses. The complete operating principles, theoritical analysis, experimental results will be presented.

  • PDF

ANALYTICAL SOLUTION OF COUPLED RADIATION-CONVECTION DISSIPATIVE NON-GRAY GAS FLOW IN A NON-DARCY POROUS MEDIUM

  • Darvishi, Mohammad Taghi;Khani, Farzad;Aziz, Abdul
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1203-1216
    • /
    • 2010
  • The homotopy analysis method (HAM) has been applied to develop an analytic solution for the coupled radiation-convection dissipative non-gray gas flow in a non-Darcy porous medium. Results are presented for the surface shear and temperature profiles are presented to illustrate the effect of various parameters appearing in the analytical formulation. The accuracy and convergence of the method is also discussed.

Error propagation effects for explicit pseudodynamic algorithms

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.157-164
    • /
    • 2000
  • This paper discusses the error propagation characteristics of the Newmark explicit method, modified Newmark explicit method and ${\alpha}$-function dissipative explicit method in pseudodynamic tests. The Newmark explicit method is non-dissipative while the ${\alpha}$-function dissipative explicit method and the modified Newmark explicit method are dissipative and can eliminate the spurious participation of high frequency responses. In addition, error propagation analysis shows that the modified Newmark explicit method and the ${\alpha}$-function dissipative explicit method possess much better error propagation properties when compared to the Newmark explicit method. The major disadvantages of the modified Newmark explicit method are the positive lower stability limit and undesired numerical dissipation. Thus, the ${\alpha}$-function dissipative explicit method might be the most appropriate explicit pseudodynamic algorithm.

Non-Dissipative Snubber for High Switching Frequency and High Power Density Step-Down Converters (고속 스위칭 및 고 전력밀도 강압형 컨버터를 위한 무손실 스너버)

  • Shin, Jung-Min;Park, Chul-Wan;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, a non-dissipative snubber for reducing the switching losses in the step down converter is proposed. The conventional step down converter, e.g., buck converter, suffers from serious switching losses and consequentially heat generation because of its hard switching. Thus, it is unsuitable for high switching frequency operation. Reduction of the reactive components' size, such as an output inductor and capacitor, is difficult. The proposed snubber can slow down the increasing current slopes and switch voltage at turn-on and turn-off transients, thereby significantly reducing the switching loses. Additionally, the slowly increasing current during switch turn-on transition, can effectively solve the output rectifier diode reverse recovery problem. Therefore, the proposed non-dissipative snubber not only leads to the efficiency of converter operation at high switching frequency but also reduces the reactive components size in proportion to the switching frequency. To confirm the validity of the proposed circuit, theoretical analysis and experimental results from a 150 W, 1 MHz prototype are presented.

Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber Circuits (무손실 스너버적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 캔버터)

  • Kim, E.S.;Kim, T.J.;Joe, K.Y.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1989-1992
    • /
    • 1997
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output is presented. Due to using of the non-dissipative snubber in the primary side, a single stage high-power factor isolated full bridge boost converter has a significant reduction of switching losses in main switching devices and output rectifiers of the primary and secondary side, respectively. The non-dissipative snubber adopted in this study is consisted of a snubber capacitor C. and a snubber inductor $L_r$, a fast recovery snubber diode $D_r$, a commutation diode $D_p$. This paper presents the complete operating principles, theoretical analysis and simulation results.

  • PDF

A Study on the High-Power-Factor, High-Efficiency AC/DC Boost Converter with Non-Dissipative Snubber (무손실 스너버를 적용한 고역률, 고효률 AC/DC Boost 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Kwon, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.112-115
    • /
    • 2002
  • Previous AC/DC PFC Boost Converter perceives feed forward signal of input and feedback signal of output for average current-mode control. Previous Boost Converter, the quantity of input current will be decreased by the decrease of output current in light load, and also power factor comes to be decreased. Also the efficiency of converter will be decreased by the decrease of power factor. The proposed converter presents the good PFC(Power Factor Correction), low line current hormonic distortions and tight output voltage regulations using non-dissipative snubber. The proposed converter also has a high efficiency by non-dissipative snubber circuit. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF

CONVERGENCE AND DECAY ESTIMATES FOR A NON-AUTONOMOUS DISPERSIVE-DISSIPATIVE EQUATION WITH TIME-DEPENDENT COEFFICIENTS

  • Kim, Eun-Seok
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.281-295
    • /
    • 2022
  • This paper deals with the long - time behavior of global bounded solutions for a non-autonomous dispersive-dissipative equation with time-dependent nonlinear damping terms under the null Dirichlet boundary condition. By a new Lyapunov functional and Łojasiewicz-Simon inequality, we show that any global bounded solution converges to a steady state and get the rate of convergence as well, which depends on the decay of the non-autonomous term g(x, t), when damping coefficients are integral positive and positive-negative, respectively.

Accurate Multi-level Schemes for Advection and Acoustics (대류 및 소음 해석을 위한 정확한 다층 수치 기법)

  • Kim C. W
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.21-31
    • /
    • 2003
  • A non-dissipative and very accurate one-dimensional upwind leapfrog method is extended to higher-order and multi-dimensional advection and acoustic equations. The higher-order versions are developed by extending the stencils in space and time. The schemes are then successfully applied to the classical test cases for advection and acoustics.