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ANALYTICAL SOLUTION OF COUPLED

RADIATION-CONVECTION DISSIPATIVE NON-GRAY GAS

FLOW IN A NON-DARCY POROUS MEDIUM

M. T. DARVISHI, F. KHANI∗ AND ABDUL AZIZ

Abstract. The homotopy analysis method (HAM) has been applied to de-
velop an analytic solution for the coupled radiation-convection dissipative
non-gray gas flow in a non-Darcy porous medium. Results are presented
for the surface shear and temperature profiles are presented to illustrate
the effect of various parameters appearing in the analytical formulation.
The accuracy and convergence of the method is also discussed.
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Nomenclature

f dimensionless stream function
u, v velocity along x, y directions
g acceleration due to gravity
KλW absorption coefficient at the wall
ebλ Planck function
F thermal radiation parameter
qR radiative heat flux
Cp specific heat at constant pressure
T temperature
U∞ free stream velocity (at the edge of boundary layer)
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Tw, T∞ wall temperature, free stream temperature
Gr Grashof number(= gβ4TL3/v2)
Pr Prandtl number(= µf/αfρf = vf/αf)
Da Darcy number(= k/L2)
Re Reynolds number(= U0L/vf)
Fs Forcheimmer number(= b/L)
k permeability of the porous medium
L location of the start of the thermal boundary layer
V transpiration velocity
L1,L2 auxiliary linear operators
q embedding parameter
~ non-zero auxiliary parameter
N1,N2 non-linear operators
fm mth-order approximation

Greek symbols
α generalized boundary layer parameter(= U0δδx/vf)
αf thermal diffusivity)(= κ/(ρCp)f)
β coefficient of volume expansion
ε porosity of the medium
θ dimensionless temperature variable
θm mth-order approximation
vf fluid kinematic viscosity(= µf/ρf)
κ stagnant thermal conductivity of fluid-saturated porous medium

κf fluid thermal conductivity
λ thermal conductivity ratio κf/κ
µf fluid dynamic viscosity
γ transpiration parameter(= V δ/vf)

δ boundary layer thickness
√
2α(x− x0)vf/U0

η spanwise pseudo-similarity co-ordinate
ξ streamwise pseudo-similarity co-ordinate
ρf fluid density
ψ stream function

Subscripts
f fluid
w properties at the wall
∞ free stream condition
m order of approximation

1. Introduction

Studies of coupled convective-radiative flows in non-porous media began to
appear in the 1960s. Cess [1] analyzed the effect of combined convection and
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radiation in the boundary layer flow of an absorbing gas flowing over a flat
plate. The paper by Habib and Grief [2] reported the results of analytical and
numerical studies of heat transfer in forced flow of a non-gray radiating gas.
Their study was later extended to natural convective flow [3]. Kubo [4] inves-
tigated the stagnation-point flow of a radiating gas in the limit of large optical
thickness. On the other hand, Novotny and Kelleher [5] studied the natural con-
vection driven stagnation flow of an absorbing-emitting gas. Mattic [6] focused
on coaxial radiative and convective heat transfer in gray and non-gray gases. A
perturbation method was used by Tien and Abu-Romia [7] in the differential
analysis of radiation interaction with conduction and convection. The problem
of combined convection and radiation in an absorbing, emitting, and scattering
gas flow in a tube was solved by Azad and Modest [8]. Webb and Viskanta
[9] examined the problem of radiation induced buoyancy flow in rectangular en-
closures. While the majority of these studies neglected boundary layer effect,
Yucel et al. [10] investigated the boundary layer flow of a non-gray radiating
fluid. In recent years, the study of coupled convective flows in porous media has
become important due to its applicability in nuclear geo-repositories, geothermal
systems, and energy storage devices [11, 12, 13]. These studies are extensions
of earlier works on non porous media discussed briefly in the preceding para-
graph. Takhar and Beg [11] considered the flow of an optically dense fluid in
a non-Darcy porous medium and found that the presence of radiation signifi-
cantly augmented the overall heat transfer process. In a subsequent paper [14],
the same authors considered magneto-hydrodynamic radiative-convective flow in
a Darcy-Brinkman-Forcheimmer porous medium and obtained numerical solu-
tions using the Kellers box method which is an implicit finite difference scheme.
In the present work, we revisit the problem considered by Takhar, Beg, and Ku-
mari [15] and provide a highly accurate analytical solution of the problem using
the homotopy analysis method (HAM). A highly accurate and widely used tech-
nique for solving nonlinear problems is the homotopy analysis method (HAM)
[16, 17, 18, 19], which has been successfully applied to many nonlinear problems
in science and engineering [20, 21, 22, 23]. Unlike the perturbation techniques,
HAM is independent of any small physical parameters. More importantly, unlike
the perturbation and non-perturbation methods, HAM provides a simple way
to ensure the convergence of series solution so that one can always get accurate
enough approximations even for the strongly nonlinear problems. Furthermore,
HAM provides the freedom to choose the so- called auxiliary linear operator so
that one can approximate a nonlinear problem more effectively by means of bet-
ter base functions, as demonstrated by Liao and Tan [18]. The degree of freedom
is so large that even the second-order nonlinear two-dimensional Gelfand equa-
tion can be solved by means of a 4th-order auxiliary linear operator within the
framework of the HAM as shown in [18]. Especially, by means of the HAM, a
few new solutions of some nonlinear problems [24, 25] have been achieved which
otherwise were not solvable by other analytic methods.
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2. Formulation of the problem

Consider the flow of an optically-thin non-gray radiating viscous dissipating
gas past a vertical semi-infinite porous plate in a two-dimensional non-Darcy
porous medium. The continuity, momentum conservation and energy , under
the Boussinesq approximation system, may be written for the two-dimensional
(x, y) flow as follows [15]

∂u

∂x
+

∂v

∂y
= 0, (1)

ρf
ε2

[
u
∂u

∂x
+ v

∂u

∂y

]
= −µf u

k
+ ρfgβ

(
T − T∞

)
+

µ′

ε

∂2u

∂y2
− ρf bu

2

k
(2)

ρCp

[
u
∂T

∂x
+ v

∂T

∂y

]
= k

∂2T

∂y2
+ µf

(
∂u

∂y

)2

− ∂qR
∂y

. (3)

For simplicity, we assume that the porous medium is isotropic and homogeneous
and contains no internal heat sources.

The differential radiative flux term ∂qR/∂y can be very complex to model
and usually, therefore, an algebraic approximations is employed. Cogley et al.
[26] introduced a compact and numerically amenable expression. They showed
that in the optically thin limit, the fluid is not self-absorbing but will absorb
radiation emitted by the confining boundaries (i.e. flat vertical plate in our case)
and the radiative flux gradient near equilibrium can be approximated as

∂qR
∂y

= 4
(
T − Tw

)
I, (4)

where I is the intensity parameter and is given by the following integral.

I =

∫ ∞

0

KλW

(
∂ebλ/∂T

)
w
d λ. (5)

Beg et al. [14] introduced the following pseudo-similarity transformations:

ψ = U0δ(x)f(ξ, η) +

∫
V (x) dx (6)

η =
y

δ(x)
(7)

ξ = ξ(x) =
g β∆Tε2(x− x0)

U2
0L

2
(8)

θ =
T − T∞
Tw − T∞

, F =
4 IL2

ρCpvf
. (9)

The transformation leads to the following pseudo-similarity equations.

f ′′′ + f ′′
(
α f + γ + 2αξ
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2f
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− θ +

( Re

GrDa

)
f ′
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)
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(
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(10)
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(
1

Pr

)
θ′′ + λEc

(
f ′′)2 + λθ′

(
αf + γ

)
+ 2αλξθ′

∂f

∂ξ
−

(
2α

Pr

Re

Gr

)
Fξθ − 2αλ ξ

∂θ

∂ξ
f ′ = 0 (11)

where primes denote differentiation with respect to η.
The appropriate boundary conditions are given by

η = 0 : f(ξ) = 0, f ′(ξ) = 0, θ(ξ) = 1,

η → ∞ : f ′(ξ) = 1, θ(ξ) = 0.
(12)

In the next section, we solve the system of non-linear partial differential equa-
tions (10)-(12), analytically, using HAM.

3. HAM solution

In view of the boundary conditions (12), f(ξ, η) and θ(ξ, η) can be expressed
by the set of base functions of the form

{
ξkηj exp(−n η)

∣∣∣k ≥ 0, j ≥ 0, n ≥ 0
}

(13)

in the form of the following series

f(ξ, η) = a00,0 +

∞∑
n=0

∞∑

k=0

∞∑

j=0

ajn,k η
kξj exp(−nη),

θ(ξ, η) =

∞∑
n=0

∞∑

k=0

∞∑

j=0

bjn,k η
kξj exp(−nη),

(14)

in which ajn,k and bjn,k are the coefficients. Invoking the so-called rule of so-

lution expressions for f(ξ, η) and θ(ξ, η) and Eqs. (10)-(12) the initial guesses
f0(η), θ0(η) and linear operators L1 and L2 are

f0(ξ, η) = η + exp(−η)− 1, (15)

θ0(ξ, η) = exp(−η), (16)

L1(f) =
∂3f

∂η3
− ∂f

∂η
, (17)

L2(f) =
∂2f

∂η2
− f. (18)

The operators L1 and L2 have the following properties:

L1

(
c1 + c2 exp(−η) + c3 exp(η)

)
= 0, (19)

L2

(
c4 exp(−η) + c5 exp(η)

)
= 0. (20)

in which ci, i = 1, 2, · · · , 5 are arbitrary constants.
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Let q ∈ [0, 1] denotes an embedding parameter and ~ be a non-zero auxiliary
parameter. Then we construct the following zeroth order equations

(1− q)L1

[
f̂(ξ, η; q)− f0(ξ, η)

]
= q ~N1

[
f̂(ξ, η; q), θ̂(ξ, η; q)

]
, (21)

(1− q)L2

[
θ̂(ξ, η; q)− θ0(ξ, η)

]
= q ~N2

[
f̂(ξ, η; q), θ̂(ξ, η; q)

]
, (22)

subject to the conditions

f̂(ξ, 0; q) = 0, f̂ ′(ξ, 0; q) = 0, f̂ ′(ξ,+∞; q) = 1, (23)

θ̂(ξ, 0; q) = 1, θ̂(ξ,+∞; q) = 0, (24)

where the non-linear operators are defined as:
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∂η3
+

∂2f̂(ξ, η; q)
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αf̂(ξ, η; q) + γ + 2αξ

∂f̂(ξ, η; q)

∂ξ

)
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(
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∂2f̂(ξ, η; q)

∂ξ∂η
− θ̂(ξ, η; q) +

(
Re
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)
∂f̂(ξ, η; q)

∂η

)
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(
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Re2
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)
ξ

(
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)2

,

(25)
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(
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Pr
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+ λEc

(
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∂η2
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+ λ
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(
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∂f̂(ξ, η; q)
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∂θ̂(ξ, η; q)

∂ξ
.

(26)

For q = 0 and q = 1 we have

f̂(ξ, η; 0) = f0(ξ, η), f̂(ξ, η; 1) = f(ξ, η),

θ̂(ξ, η; 0) = θ0(ξ, η), θ̂(ξ, η; 1) = θ(ξ, η).
(27)

Definition. Let ψ be a function of the homotopy-parameter q, then

Dm(ψ) =
1

m!

∂mψ

∂qm

∣∣∣
q=0

, (28)

is called the mth-order homotopy-derivative of ψ, where m ≥ 0 is an integer
[20].

As q increases from 0 to 1, f̂(ξ, η; q) and θ̂(ξ, η; q) vary from f0(ξ, η) and θ0(ξ, η)
to the exact solutions f(ξ, η) and θ(ξ, η), respectively. By Taylor’s theorem and
Eq. (27), we can write

f̂(ξ, η; q) = f0(ξ, η) +

∞∑
m=1

Dm

(
f̂(ξ, η; q)

)
qm, (29)

θ̂(ξ, η; q) = θ0(ξ, η) +

∞∑
m=1

Dm

(
θ̂(ξ, η; q)

)
qm. (30)
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The convergence of the series given in Eqs. (29)-(30) strongly depends upon
parameter ~. Therefore ~ is properly chosen so that the series (29)-(30) are
convergent at q = 1 and thus by using Eq. (27), one obtains

f(ξ, η) = f0(ξ, η) +

∞∑
m=1

fm(ξ, η), (31)

θ(ξ, η) = θ0(ξ, η) +

∞∑
m=1

θm(ξ, η). (32)

Operating on both sides of Eqs. (21)-(22) with Dm, we have the so called mth-
order deformation equations

L1

[
fm(ξ, η)− χmfm−1(ξ, η)

]
= ~R1(ξ, η), (33)

L2

[
θm(ξ, η)− χmθm−1(ξ, η)

]
= ~R2(ξ, η), (34)

fm(ξ, 0) = f ′
m(ξ, 0) = f ′

m(ξ,+∞) = 0, (35)

θm(ξ, 0) = θm(ξ,+∞) = 0, (36)

where

R1(ξ, η) = Dm−1

(
N1

[
f̂(ξ, η; q), θ̂(ξ, η; q)

])
,

R2(ξ, η) = Dm−1

(
N2

[
f̂(ξ, η; q), θ̂(ξ, η; q)

])
,

and

χm =

{
0 ;m ≤ 1,
1 ;m ≥ 2.

Therefore, we have
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′′′
m−1 + α

m−1∑

k=0

fkf
′′
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′′
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k=0

(∂fk
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′′
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k

∂ξ
f
′
m−1−k

)

+ 2αξ

(
θm−1 −

(
Re

GrDa
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f
′
m−1

)
− 2α

(
Fs

Da

Re2

Gr

)
ξ

m−1∑

k=0

f
′
kf

′
m−1−k,

(37)

and

R2(ξ, η) =

(
1

Pr

)
θ′′m−1 + λ

m−1∑

k=0

(
Ecf ′′

k f ′′
m−1−k + αfkθ

′
m−1−k

)
+ λγθ′m−1

+ 2αλξ

m−1∑

k=0

(∂fk

∂ξ
θ′m−1−k − f ′

k

∂θm−1−k

∂ξ

)
−

(
2α

Pr

Re

Gr

)
F ξθm−1

(38)

The general solutions of Eqs. (33)-(38) can be written as

fm(ξ, η) = f?(ξ, η) + c1 + c2 exp(−η) + c3 exp(η),

θm(ξ, η) = θ?(ξ, η) + c4 exp(−η) + c5 exp(η),

where f?(ξ, η) and θ?(ξ, η) are the particular solutions and the constants are
determined by the boundary conditions (35) and (36).
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4. Results and discussion

The series in Eqs. (31) and (32) are the solutions of the considered problem
if one guarantees the convergency of these series. As pointed out by Liao [19],
the convergence and the rate of approximation for the HAM solution strongly
depends upon ~. In order to obtain the admissible value of ~ for the present
problem, the ~-curves are plotted for 10th-order of approximations. For exam-
ple, Figs. (1)-(2) demonstrate that the size of the valid region strongly depends
on the parameters Ec and Gr. Figure 1 shows the ~-curves of θ′′(0) for different
values of Eckert number (Ec), in ξ = 0, α = 1, γ = 0.1(suction),Re = 1,Gr =
100,Da = 0.01,Fs = 0.055,Pr = 0.733(air), λ = 1 and F=100 at 10th-order of
approximations.
Figure 2 shows the ~-curves of f ′′(0) for different values of Grashof number
(Gr) in ξ = 0, α = 1, γ = 0.1,Re = 1,Da = 0.01,Ec = 0.25,Fs = 0.055,Pr =
0.9(gas), λ = 1 and F=250 at 10th-order of approximations. The surface shear
stress and local heat transfer parameter functions f ′′(ξ, 0) and θ′(ξ, 0) (plate
surface temperature gradient),have been computed against ξ for different values
of the thermofluid parameters F, γ, Ec and α. Additionally, we have plotted
the temperature function θ and f ′ with spanwise co-ordinate η at the edge of
the plate, that is, for ξ = 1, for different values of F, γ, Pr, Gr and α. The
Reynolds number Re is fixed at 1 unless otherwise indicated, and λ has unit
value, i.e. the fluid thermal conductivity and fluid-saturated porous continuum
thermal conductivity are equal.
Figure 3 (left) and Figure 3 (right) describe the profiles of f ′′(ξ, 0) and θ′(ξ, 0)
for different values of radiation parameter F , respectively. Pr is taken as 0.733
corresponding to air. Grashof number is fixed at 100. A clear decrease in shear
stress f ′′(ξ, 0) accompanies an increase in F from 0 (no radiative heat transfer
contribution, i.e. purely conductive-convective heat transfer) to 250. Conversely,
a sharp increase in the magnitude of the surface heat transfer (temperature gra-
dient) θ′(ξ, 0) occurs as F is increased from 0 to 250. We can see a good agrement
between these graphs and Figures 2 and 3 in [15].
Figure 4 (left) and Figure 4 (right) show the effects of the transpiration pa-
rameter γ on f ′′(ξ, 0) and θ′(ξ, 0) for different values of radiation parameter F ,
respectively. There is a very good agreement between these plots and Figures
4 and 5 in [15]. In both graphs of Figure 4, Ec has been kept constant at 0.3

(plate cooling), Gr=100, and Darcy parameter Re
GrDa = 1. The γ parameter

simulates the phenomena of lateral mass flux by suction or blowing at the con-
fining boundary which can arise in geothermal systems or other hydrothermal
geological systems where lateral flow is directed into or out of the boundary,
(see, e.g. [27]).
Figure 5 shows the variation of dimensionless temperature with spanwise pseudo-
similarity variable η, at ξ = 1 (plate end) for different values of radiation param-
eter F . As we can see from this figure, increasing F , from 0 to 500, decreases
the temperature, all profiles returning asymptotically to zero at η = 5.
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Figure 1. ~-curves of θ′′(0) for different values of Ec in ξ = 0, α =
1, γ = 0.1(suction),Re = 1,Gr = 100,Da = 0.01,Fs = 0.055,Pr =
0.733(air), λ = 1 and F=100 at 10th-order of approximations.

Similarly, Figure 6, shows the variation of dimensionless temperature with span-
wise pseudo-similarity variable η, at ξ = 1 (plate end) for different values of
Grashof number (Gr). As we can see from this figure, increasing Gr, from 0 to
300, decreases the temperature, all profiles returning asymptotically to zero at
η ' 5.
Figure 7 (left) shows the variation of dimensionless temperature with spanwise
pseudo-similarity variable η, at edge of plate (ξ = 1) for different values of pa-
rameter α, while Figure 7 (right) shows the values of f ′ with spanwise pseudo-
similarity variable η, at ξ = 1 (plate end) for different values of parameter α. In
all cases for α the temperature decreases by increasing η, all profiles returning
asymptotically to zero at η ' 6. The profiles of f ′ asymptotically tends to one
at η ' 8. Similar conclusions can be drawn from Figures 8 and 9.
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Figure 8. Variation of θ(1, η) with spanwise co-ordinate η at edge
of plate (ξ = 1) for different Prandtl numbers (Pr): F = 100,Gr =
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