• Title/Summary/Keyword: non-dimensional curve

Search Result 94, Processing Time 0.026 seconds

Comparative Study on Seismic Fragility Curve Derivation Methods of Buried Pipeline Using Finite Element Analysis (유한요소 해석을 활용한 매설 배관의 지진 취약도 곡선 도출 기법 비교)

  • Lee, Seungjun;Yoon, Sungsik;Song, Hyeonsung;Lee, Jinmi;Lee, Young-Joo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.213-220
    • /
    • 2023
  • Seismic fragility curves play a crucial role in assessing potential seismic losses and predicting structural damage caused by earthquakes. This study compares non-sampling-based methods of seismic fragility curve derivation, particularly the probabilistic seismic demand model (PSDM) and finite element reliability analysis (FERA), both of which require employing sophisticated finite element analysis to evaluate and predict structural damage caused by earthquakes. In this study, a three-dimensional finite element model of API 5L X65, a buried gas pipeline widely used in Korea, is constructed to derive seismic fragility curves. Its seismic vulnerability is assessed using nonlinear time-history analysis. PSDM and a FERA are employed to derive seismic fragility curves for comparison purposes, and the results are verified through a comparison with those from the Monte Carlo Simulation (MCS). It is observed that the fragility curves obtained from PSDM are relatively conservative, which is attributed to the assumption introduced to consider the uncertainty factors. In addition, this study provides a comprehensive comparison of seismic fragility curve derivation methods based on sophisticated finite element analysis, which may contribute to developing more accurate and efficient seismic fragility analysis.

A Study on Plastic Deformation Characteristics and Formability for Pure Titanium Sheet (순 티타늄 판재의 변형 특성 및 성형성 평가)

  • In, J.H.;Jeong, K.C.;Lee, H.S.;Kim, J.H.;Kim, J.J.;Kim, Young Su
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.301-313
    • /
    • 2018
  • In this paper, tensile test was performed on pure titanium sheet (CP Ti sheet) with HCP structure in each direction to evaluate mechanical and surface properties and analyze microstructural changes during plastic deformation. We also evaluated forming limits of Ti direction in dome-type punch stretching test using a non-contact three-dimensional optical measurement system. As a result, it was revealed the pure titanium sheet has strong anisotropic property in yield stress, stress-strain curve and anisotropy coefficient according to direction. It was revealed that twinning occurred when the pure titanium sheet was plastic deformed, and tendency depends differently on direction and deformation mode. Moreover, this seems to affect the physical properties and deformation of the material. In addition, it was revealed the pure titanium sheet had different surface roughness changes in 0 degree direction and 90 degree direction due to large difference of anisotropy, and this affects the forming limit. It was revealed the forming limit of each direction obtained through the punch stretching test gave higher value in 90 degree direction compared with forming limit in 0 degree direction.

A new analytical-numerical solution to analyze a circular tunnel using 3D Hoek-Brown failure criterion

  • Ranjbarnia, Masoud;Rahimpour, Nima;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • In this study, a new analytical-numerical procedure is developed to give the stresses and strains around a circular tunnel in rock masses exhibiting different stress-strain behavior. The calculation starts from the tunnel wall and continues toward the unknown elastic-plastic boundary by a finite difference method in the annular discretized plastic zone. From the known stresses in the tunnel boundary, the strains are calculated using the elastic-plastic stiffness matrix in which three dimensional Hoek-Brown failure criterion (Jiang and Zhao 2015) and Mohr-Coulomb potential function with proper dilation angle (i.e., non-associated flow rule) are employed in terms of stress invariants. The illustrative examples give ground response curve and show correctness of the proposed approach. Finally, from the results of a great number of analyses, a simple relationship is presented to find out the closure of circular tunnel in terms of rock mass strength and tunnel depth. It can be valuable for the preliminary decision of tunnel support and for prediction of tunnel problems.

THE CHARACTERISTICS OF HEAT TRANSFER AND CHEMICAL REACTION FOR THERMAL CRACKING OF ETHANE IN TUBULAR REACTOR (에탄 열분해 반응이 동반된 관형 반응기에서의 열전달 및 화학반응 특성 연구)

  • Shin, C.Y.;Ahn, J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • Thermal cracking is commonly modeled as plug flow reaction, neglecting the lateral gradients present. In this paper, 2-dimensional computational fluid dynamics including turbulence model and molecular reaction scheme are carried out. This simulation is solved by means of coupled implicit scheme for stable convergence of solution. The reactor is modeled as an isothermal tube, whose length is 1.2 m and radius is 0.01 m, respectively. At first, The radial profile of velocity and temperature at each point are predicted in its condition. Then the bulk temperature and conversion curve along the axial direction are compared with other published data to identify the reason why discussed variations of properties are important to product yield. Finally, defining a new non-dimensional number, Effect of interaction with turbulence, heat transfer and chemical reaction are discussed for design of thermal cracking furnace.

Analysis of 3D Geometry and Compressive Behavior of Aluminum Open Cell Foam Using X-ray Micro CT (마이크로 X-ray CT를 활용한 알루미늄 개방형 폼의 형상 및 압축 거동 분석)

  • Kim, Y.I.;Kim, J.H.;Lee, J.K.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.518-523
    • /
    • 2011
  • The three dimensional geometries of an aluminum open cell foam before and after uniaxial compressive loading were investigated using the X-ray micro CT(computed tomography). Aluminum 6101-T6 open cell foams of 10, 20, 40 ppi (pore per inch) were considered in this work. After the serial sectioning CT images of aluminum foams were obtained from non-destructive X-ray images, the exact 3D structure were reproduced and visualized with commercial image processing program. The relative density ratio was around the 7.0 to 9.0 range, the unit cells showed anisotropic shapes having the different dimensional ratios of 1.1 to 1.3 between the rise and the transverse directions. The yield stress increased with the relative density ratio and the volumetric strain increased proportionally with compressive strain. The plateau stress in the compressive stress-strain curve was caused by the buckling of ligaments.

Measurement System Development for Three-Dimensional Flow Velocity Components Using Straight-Type Five-Hole Pressure Probe (직선형 5공 압력프로브를 이용한 3차원 유동속도 계측시스템 개발)

  • Kim, J.K.;Jeong, K.J.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.56-64
    • /
    • 2006
  • This paper shows the development process of a straight-type five-hole pressure probe for measuring three-dimensional flow velocity components. The data reduction method using a bi-cubic curve-fitting program in a new calibration map was introduced in this study. This new calibration map can be applied up to the application angle, ${\pm}55^{\circ}$ of a probe. As a result, for the application angle of ${\pm}45^{\circ}$, an error for yaw and pitch angles appeared from $-1.76^{\circ}\;to\;1.83^{\circ}$ and from $-1.91^{\circ}\;to\;1.75^{\circ}$, respectively. Moreover, an error for a vector magnitude and a static pressure compared with a dynamic one showed from -7.83% to 4.87% and from -0.73 to 0.77, respectively. Even though this data reduction method showed unsatisfactory errors in a vector magnitude, it resulted in an easy and simple application method. Especially, when it was applied to an actual flow field including a swirling flow, a good result came out on the whole. However, in order to obtain a better result, it is thought that a more sophisticated interpolation method needs to be introduced.

  • PDF

A Concrete Model for Analysis of Concrete Structure with Confinement (구속응력을 받는 콘크리트 구조물 해석을 위한 콘크리트 구성모델)

  • Kwon, Min-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.433-442
    • /
    • 2003
  • This paper presents a hypoplastic model for three-dimensional analysis of concrete structures under monotonic, cyclic, proportional and non-proportional loading. The constitutive model is based on the concept of equivalent uniaxial strains that allows the assumed orthotropic model to be described via three equivalent uniaxial stress-strain curves. The characteristics of these curves are obtained from the ultimate strength surface in the principal stress space based on the Willam-Warnke curve. A cap model is added to consider loading along or near the hydrostatic axis. The equivalent uniaxial curve is based on the Popovics and Saenz models. The post-peak behavior is adjusted to account for the effects of confinement and to describe the change in response from brittle to ductile as the lateral confinement increases. Correlation studies with available experimental tests are presented to demonstrate the model performance. Tests with monotonic loading on specimens under constant lateral confinement are considered first, followed by biaxial and triaxial tests with cyclic loads. The triaxial test example considers non-proportional loading.

A Study on Application of HWAW Method to the Non-horizontally Layered Soil Structure (HWAW 기법의 비수평 출상구조지반 적용에 대한 고찰)

  • Bang, Eun-Seok;Park, Heon-Joon;Park, Hyung-Choon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.5-17
    • /
    • 2009
  • In HWAW method, experimental dispersion curve is obtained through time-frequency analysis, and inversion procedure is based on the forward modeling which considers full wavefield. Therefore, it enables us to use relatively short testing setup and has advantage for two dimensional subsurface imaging compared with another surface wave methods. Numerical study was performed to verify that the HWAW method can be applied to non-horizontally layerd soil structure. The experimental dispersion curves obtained from HWAW method agreed with the theoretical dispersion curves based on full wavefield. Experimental dispersion curves are mainly more affected by the region between two receivers than by the region from source to the first receiver. Fluctuation phenomena of dispersion curve can be reduced by adequate receiver spacing setup. From numerical study, it was thought that reliable Vs distribution map can be constructed by HWAW method and finally subsurface imaging was tried in the real field.

Simultaneous 3D Machining with Real-Time NURBS Interpolation

  • Hong, Won-Pyo;Lee, Seok-Woo;Park, Hon-Zong;Yang, Min-Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.336-342
    • /
    • 2003
  • Increasing demand on precision machining using computerized numerical control (CNC) machines have necessitated that the tool move not only with the smallest possible position error but also with smoothly varying feedrates in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining process investigated using a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non Uniform Rational B-Spline (NURBS) curve is proposed. With this accurate and efficient algorithm for the generation of complex 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining was accomplished satisfactorily.

Development and Calibration of a Seven-Hole Pressure Probe (7공 압력프로브의 교정 및 개발)

  • Yang, Jae-Hun;Chang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • The present study was carried out in order to develope a seven-hole pressure probe which is able to measure high flow angles. The seven-hole pressure probe is a non-nulling, directional velocity probe used for measuring three dimensional flow that having high flow angles. A 4 mm diameter seven-hole conical pressure probe was manufactured with a cone angle of 70$^{\circ}$. The probe was comprised of seven 1 mm diameter stainless steel tubes packed close together and fitted into an outer stainless steel sleeve. The calibration procedure is based on the use of the Callington's polynomial curve-fit method. The validity of the seven-hole conical pressure probe is demonstrated by comparisons with hot-wire data.

  • PDF