• Title/Summary/Keyword: non-destructive methods

Search Result 390, Processing Time 0.028 seconds

Estimation of Rockbolt Integrity by Using Non-Destructive Testing Techniques(I) -Numerical and Experimental of Applicability- (비파괴 시험기법을 이용한 록볼트의 건전도 평가(I) -수치해석 및 실험적 적용성 평가-)

  • Lee, Jong-Sub;Lee, Yong-Jun;Eom, Tae-Won;Han, Shin-In;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.3-12
    • /
    • 2006
  • The purpose of this study is to describe the Non-Destructive Testing(NDT) of the rockbolt and investigate the applicability of the NDT methods to estimate the integrity of the rockbolt. To examine the rockbolt integrity including rockbolt itself and grouting material, two methods are adopted: numerical and experimental methods. In the numerical method, the numerical code DISPERSE is used to analyze the dispersion of the rockbolt. The dispersion curve shows the effects of the thickness and stiffness of grouted materials on the embedded rockbolt. Therefore, the optimal frequency for the integrity test of the rockbolt is obtained: 20~120kHz in L(1,0) mode. In the experimental methods, destructive and non-destructive tests are carried out in a laboratory. In the non-destructive test, the low frequency mode generated by an impact and t he high frequency mode generated by an ultrasonic transducer seem to characterize the rockbolt condition readily. The experimental results show that the guided waves attenuate more significantly when the stiffness of the grouted material increases and/or the zone of the defect increases. Meanwhile, the ultimate capacity of rockbolt was evaluated through the pull-out tests and is compared to the NDT results. This study demonstrates that the NDT is a valuable tool for the rockbolt integrity evaluation.

  • PDF

Application of Non-Destructive Testing Techniques to the Evaluation of Integrity of Drilled Shaft (비파괴시험을 이용한 현장타설말뚝의 건전도 평가에 관한 연구)

  • Chae, Jong-Hoon;Yu, Jae-Myung;Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.5-14
    • /
    • 2001
  • The NDT(Non-Destructive Testing) technique, detecting defects without damaging foundations, has, lately, been a matter of concern. In this study, the applicability of the borehole methods(CSL, CT, PS) and the surface reflection methods(SE, IR) to the evaluation of integrity of drilled shaft was investigated through field test. Ten drilled shafts, 0.4 m in diameter and 7.0 m long each, were constructed, one shaft with no defect and nine shafts intentionally with the combination of the common defects such as soft bottom, necking, bulging, cave-in, and/or weak concrete. Analysing each NDP test result on the constructed drilled shafts, an optimum combination of the NDP methods as well as the applicability of each NDP method to detecting defects of drilled shaft have been investigated.

  • PDF

Non-destructive Inspection of Construction Joints of Concrete Structures Using the Radar and the Infrared Thermography Method (레이더법과 적외선법을 이용한 콘크리트 시공 이음부 공극의 비파괴검사)

  • Park, Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.425-432
    • /
    • 2003
  • The joint treatment of concrete is one of the technical problems in concrete constructions. Joints created with concrete constructions result in serious weakness in the aspects of both structural and water-barrier function. The radar and the infrared thermography method have been used for the non-destructive inspection of several construction joints of concrete structures in this study. The advantages and limitations of these methods are investigated for non-destructive inspection on construction joints of concrete columns. It can be shown that the detecting precision of construction joints using these methods is improved if radar analysis is carried out with a simulation analysis. In case of the infrared thermography method, the shape of construction joints can be also detected when heating is performed before testing. As the result, it has been verified that the construction joints, difficult to be detected by visual inspection, could be inspected effectively in broad areas at short period of time when these two methods are applied.

An Experimental Study on the Compressive Strength of Reinforcing Bars in Concrete Specimens and Compressive Strength Measurement Methods (콘크리트 압축강도 측정법과 공시체 내 철근이 압축강도 측정에 미치는 실험적 연구)

  • Lee, Won-Hong;Choi, Sang-Gi;Lee, Seuong-Yeol;Ahn, Jin-Hee;Kang, Beom-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.33-40
    • /
    • 2021
  • Measuring the compressive strength of concrete is a very important factor in the safety review of concrete structures. Concrete compressive strength measurement methods include destructive and non-destructive methods. The destructive method includes the uniaxial compression failure method, and the non-destructive method includes the rebound hardness method and the elastic wave measurement method. In this study, the type of measurement method and the effect of reinforcing bars inside the concrete were tested to examine the relationship between them. Regardless of the type of specimen, the average compressive strength by the elastic wave measurement method among the three experimental methods was greater than the average compressive strength by the other methods. When the specimen type is the same, the standard deviation of the measured values of the elastic wave measurement method is smaller than that of the other measurement methods, so it can be seen that the elastic wave measurement method does not show large variance in the measured values compared to the other two measurement methods. When the average compressive strength according to the test method for each specimen was compared with the average compressive strength of the compressive failure test method, the average compressive strength was measured to be high in the order of the elastic wave measurement method, the compression failure test, and the rebound hardness method. Since the measured values of the compressive strength of concrete are different depending on the method of measuring the compressive strength of concrete and the presence or absence of reinforcing bars inside the concrete, further research is required considering the effect of various concrete covers.

Terahertz Non-destructive Testing Technology for Industrial Applications (산업용 테라헤르츠 비파괴 검사 기술)

  • Lee, E.S.;Moon, K.;Lee, I.M.;Park, D.W.;Choi, D.H.;Shin, J.H.;Kim, H.S.;Choi, D.H.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.3
    • /
    • pp.59-69
    • /
    • 2018
  • Terahertz (THz) imaging and spectroscopy have been developed as non-destructive testing methods for various industrial applications. However, they have not been widely adopted in real applications owing to a high system price and the large size of conventional THz time-domain spectroscopy systems, which are based on ultrashort optical pulse lasers. Recently, various types of compact THz emitters and detectors have become available. As a result, THz non-destructive test (NDT) systems have become viable solutions. Herein, we briefly review the recent advances in THz NDT techniques adopting continuous-wave THz systems, including our recent results of a THz-based waterproof test system and an electrical connection inspection system for car manufacturing.

Non-Destructive Evaluation of Material Properties of Nanoscale Thin-Films Using Ultrafast Optical Pump-Probe Methods

  • Kim, Yun-Young;Krishnaswamy, Sridhar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Exploration in microelectromechanical systems(MEMS) and nanotechnology requires evaluation techniques suitable for sub-micron length scale so that thermal and mechanical properties of novel materials can be investigated for optimal design of miro/nanostructures. The ultrafast optical pump-probe technique provides a contact-free and non-destructive way to characterize nanoscale thin-films, and its ultrahigh temporal resolution enables the study of heat-transport phenomena down to a sub-picosecond regime. This paper reviews the principle of optical pump-probe technique and introduces its application to the area of micro/nano-NDE.

Strength Evaluation of Fire-Damaged High Strength Concrete by Non-Destructive Tests (비파괴방법에 의한 화해를 입은 고강도 콘크리트의 강도추정)

  • Kim Hee Sun;Park Jae Young;Choi Eun Gyu;Shin Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.392-395
    • /
    • 2004
  • When a concrete member is damaged by fire accident, it can lose its strength. And the degradation rate of losing its strength affected by many environmental conditions. But there is few research for equation for strength evaluation of fire-damaged concrete. Besides, it is impossible to destruct structural member from the building for the evaluation. So, I will suggest a new equation for strength evaluation of fire-damaged RC beam using non-destructive test. For this purpose, the researchers are exploring the performance of non-destructive testing methods using Ultrasonic test, Schmidt Hammer test and Coring test against fire damaged concrete specimen.

  • PDF

Inspection for Internal Flaw and Thickness of Concrete Tunnel Lining Using Impact Echo Test (충격반향시험에 의한 콘크리트 터널 라이닝 내부결함 및 두께 조사)

  • 김영근;이용호;정한중
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.230-237
    • /
    • 1997
  • As concrete structure is getting old and decrepit, its inspection and diagnosis is getting important. Therefore, it is necessary to estimate the soundness of structure using non-destructive tests for effective repairs and maintenances. But, applications of non-destructive tests in tunnel have been used restrictively, due to accessibility only from one side in tunnel lining and presence of tunnel installations. Recently, the various non-destructive techniques have been studied. Especially, ground penetrating radar(GPR) and impact echo (IE) methods have been researched for tunnel inspection. In this study, the applicability of impact echo test in tunnel lining inspection has been investigated. This paper described the tunnel inspection for lining thickness and internal flaw using impact echo tests. Model tests were carried out using impact echo test systems on two concrete models, Model I is measuring for lining thickness, Model II is detecting for internal flaw. Also, the test were applied for lining inspections in a tunnel constructed by NATM. From the results of impact echo tests, we have concluded that impact echo test is a very useful and effective technique for inspecting the concrete tunnel linings.

  • PDF

Study of Boiler Tube Micro Crack Detection Ability by Metal Magnetic Memory (금속 자기기억법 활용 보일러 튜브의 미소 결함 검출력 연구)

  • Jungseok, Seo;Joohong, Myong;Jiye, Bang;Gyejo, Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.93-96
    • /
    • 2022
  • The boiler tubes of thermal power plants are exposed to harsh environment of high temperature and high pressure, and the deterioration state of materials rapidly increases. In particular, parent material and welds of the materials used are subjected to a temperature change and various constraints, resulting in deformation and its growth, resulting in frequent leakage accidents caused by tube failure. The power plant checks the integrity of boiler tubes through non-destructive testing as it may act as huge costs loss and limitation of power supply during power station shutdown period due to boiler tube leakage. However, the current non-destructive testing is extremely limited in the field to detect micro cracks. In this study, the ability of metal magnetic memory technique to detect flaws of size that are difficult to inspect by the visual or general non-destructive methods was verified in the early stage of their occurrence.

Evaluation of Non-destructive Test Results for Existing Concrete Bridges in Korea (노후화된 국내 콘크리트 교량에 적합한 비파괴 시험 결과의 평가)

  • 이학은;윤영수;백영인;이병철;김영민;정우용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.385-390
    • /
    • 1998
  • Non-destructive field tests of the concrete has achieved increasing acceptance for the evaluation of existing concrete structures. As two major testing methods, this paper recommends the proper empirical relationship between the rebound number together with the ultrasonic pulse velocity and the core strength to fit the old concrete bridges in Korea.

  • PDF