• Title/Summary/Keyword: non-continuum

Search Result 174, Processing Time 0.024 seconds

CLUSTER MERGERS AND NON-THERMAL PHENOMENA: A STATISTICAL MAGNETO-TURBULENT MODEL

  • CASSANO R.;BRUNETTI G.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.583-587
    • /
    • 2004
  • With the aim to investigate the statistical properties and the connection between thermal and non-thermal properties of the ICM in galaxy clusters, we have developed a statistical magneto-turbulent model which describes, at the same time, the evolution of the thermal and non-thermal emission from galaxy clusters. In particular, starting from the cosmological evolution of clusters, we follow cluster. mergers, calculate the spectrum of the magnetosonic waves generated in the ICM during these mergers, the evolution of relativistic electrons and the resulting synchrotron and Inverse Compton spectra. We show that the broad band (radio and hard x-ray) non-thermal spectral properties of galaxy clusters can be well accounted for by our model for viable values of the parameters (here we adopt a EdS cosmology).

Quantitative estimation of the energy ux during an explosive chromospheric evaporation in a white light are kernel observed by Hinode, IRIS, SDO, and RHESSI

  • Lee, Kyoung-Sun;Imada, Shinsuke;Watanabe, Kyoko;Bamba, Yumi;Brooks, David H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.67.3-68
    • /
    • 2016
  • An X1.6 flare occurred in AR 12192 on 2014 October 22 around 14:06 UT and was observed by Hinode, IRIS, SDO and RHESSI. We analyze a bright kernel which produces a white light flare (WLF) with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We found that explosive evaporation was observed when the WLF occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WLF, HXR peak, and evaporation flows indicates that the WLF was produced by accelerated electrons. To understand the white light emission processes, we calculated the deposited energy flux from the non-thermal electrons observed by RHESSI and compared it to the dissipated energy estimated from the chromospheric lines (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about $3.1{\times}10^{10}erg\;cm^{-2}s^{-1}$ when we assume a cut-off energy of 20 keV. The estimated energy flux from the temperature changes in the chromosphere measured from the Mg II subordinate line is about $4.6-6.7{\times}10^9erg\;cm^{-2}s^{-1}$, 15 - 22 % of the deposited energy. By comparison of these estimated energy fluxes we conclude that the continuum enhancement was directly produced by the non-thermal electrons.

  • PDF

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity

  • Kral, Petr;Hradil, Petr;Kala, Jiri
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.227-237
    • /
    • 2018
  • Today, the modeling of concrete as a material within finite element simulations is predominantly done through nonlinear material models of concrete. In current sophisticated computational systems, there are a number of complex concrete material models which are based on theory of plasticity, damage mechanics, linear or nonlinear fracture mechanics or combinations of those theories. These models often include very complex constitutive relations which are suitable for the modeling of practically any continuum mechanics tasks. However, the usability of these models is very often limited by their parameters, whose values must be defined for the proper realization of appropriate constitutive relations. Determination of the material parameter values is very complicated in most material models. This is mainly due to the non-physical nature of most parameters, and also the large number of them that are frequently involved. In such cases, the designer cannot make practical use of the models without having to employ the complex inverse parameter identification process. In continuum mechanics, however, there are also constitutive relations that require the definition of a relatively small number of parameters which are predominantly of a physical nature and which describe the behavior of concrete very well within a particular task. This paper presents an example of such constitutive relations which have the potential for implementation and application in finite element systems. Specifically, constitutive relations for modeling the plane stress state of concrete are presented and subsequently tested and evaluated in this paper. The relations are based on the incremental theory of elastic strain-hardening plasticity in which a non-associated flow rule is used. The calculation result for the case of concrete under uniaxial compression is compared with the experimental data for the purpose of the validation of the constitutive relations used.

PARTICLE ACCELERATION AND NON-THERMAL EMISSION FROM GALAXY CLUSTERS

  • BRUNETTI GIANFRANCO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.493-500
    • /
    • 2004
  • The existence and extent of non-thermal phenomena in galaxy clusters is now well established. A key question in our understanding of these phenomena is the origin of the relativistic electrons which may be constrained by the modelling of the fine radio properties of radio halos and of their statistics. In this paper we argue that present data favour a scenario in which the emitting electrons in the intracluster medium (ICM) are reaccelerated in situ on their way out. An overview of turbulent-particle acceleration models is given focussing on recent time-dependent calculations which include a full coupling between particles and MHD waves.

Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures (기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

The Limit of the Continuum Assumption Based on Compressible Flow Structures in an Axisymmetric Micro-Thruster Used for a Satellite (인공위성용 축대칭 소형 추력기의 압축성 유동 구조 계산에 의한 연속체 가정의 적용 한계)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Lee, Kee-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.281-285
    • /
    • 2007
  • The flow characteristics in the thruster should be analyzed considering its geometry and the pressure ratio to estimate its performance and etc. This paper suggests the computational result of an axisymmetric real nozzle for the altitude control of a satellite to find out the application limit that the assumption of continuum mechanics holds. The steady non-reacted compressible flow field in the unstructured grid system is computed and analyzed with varying the environmental pressure (or the degree of vacuum) under the fixed pressure ratio in a real thruster of which the area ratio of exit to throat is 56. The assumption of the continuum mechanics is not approved when the environmental pressure is reduced less than $10^{-3}$ atm.

  • PDF

Topology Design Optimization of Structures using Solid Elements (3 차원 요소를 이용한 구조물의 위상 최적설계)

  • Lee Ki-Myung;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.309-316
    • /
    • 2005
  • In this paper, we develop continuum-based design sensitivity analysis (DSA) methods using both direct differential method (DDM) and adjoint variable method (AVM) for non-shape design problems. The developed DSA method is further utilized for the topology design optimization of 3-dimensional structures. In numerical examples, the analytical DSA results are verified using finite difference ones. The topology optimization method yields very reasonable results in physical point of view.

  • PDF