DOI QR코드

DOI QR Code

PARTICLE ACCELERATION AND NON-THERMAL EMISSION FROM GALAXY CLUSTERS

  • Published : 2004.12.01

Abstract

The existence and extent of non-thermal phenomena in galaxy clusters is now well established. A key question in our understanding of these phenomena is the origin of the relativistic electrons which may be constrained by the modelling of the fine radio properties of radio halos and of their statistics. In this paper we argue that present data favour a scenario in which the emitting electrons in the intracluster medium (ICM) are reaccelerated in situ on their way out. An overview of turbulent-particle acceleration models is given focussing on recent time-dependent calculations which include a full coupling between particles and MHD waves.

Keywords

References

  1. Berezinsky, V. S., Blasi, P., Ptuskin, V. S., 1997, ApJ, 487, 529 https://doi.org/10.1086/304622
  2. Blasi, P., 2001, APh, 15, 223
  3. Blasi, P., Colafrancesco, S., 1999, APh, 12, 169
  4. Brunetti, G., 2003, in 'Matter and Energy in Clusters of Galaxis', ASP Conf. Series, vol.301, p.349, eds. S. Bowyer and C.-Y. Hwang
  5. Brunetti, G., Setti, G., Feretti, L., Giovannini, G., 2001, MNRAS, 320, 365 https://doi.org/10.1046/j.1365-8711.2001.03978.x
  6. Brunetti, G., Blasi, P., Cassano, R, Gabici, S., 2004, MNRAS, 350, 1174 https://doi.org/10.1111/j.1365-2966.2004.07727.x
  7. Buote, D. A., 2001, ApJ, 553, L15 https://doi.org/10.1086/320500
  8. Cassano, R., Brunetti, G., 2004, submitted
  9. Dennison, B., 1980, ApJ, 239, L93 https://doi.org/10.1086/183300
  10. Dolag, K, Ensslin, T. A., 2000, A&A, 362, 151
  11. Dolag, K., Grasso, D., Springel, V., Tkachev, I., 2004, astroph/0410419
  12. Eilek, J. A., Henriksen, R. N., 1984, ApJ, 277, 820 https://doi.org/10.1086/161752
  13. Ensslin, T. A., 2002, A&A, 396, L17 https://doi.org/10.1051/0004-6361:20021613
  14. Feretti, L., 2003, in 'Matter and Energy in Clusters of Galaxis', ASP Conf. Series, vol.301, p.143, eds. S, Bowyer and C.-Y. Hwang
  15. Feretti, L., Giovannini, G., Bohringer, H., New Astr., 2, 501
  16. Feretti, L., Orr$\acute{u}$, E., Brunetti, G., Giovannini, G., Kassim, N., Setti, G., 2004, A&A, 423, 111 https://doi.org/10.1051/0004-6361:20040316
  17. Fujita, Y., Takizawa, M., Sarazin, C. L., 2003, ApJ, 584, 190. https://doi.org/10.1086/345599
  18. Fusco-Femiano, R., Orlandini, M., De Grandi, S., et al., 2003, A&A, 398, 441 https://doi.org/10.1051/0004-6361:20021639
  19. Gabici, S., Blasi, P., 2003, ApJ, 583, 695 https://doi.org/10.1086/345429
  20. Giovannini, G., Feretti, L., Venturi, T., Kim, K.-T., Kronberg, P. P., 1993, ApJ, 406, 399 https://doi.org/10.1086/172451
  21. Giovannini, G., Tordi, M., Feretti, L., 1999, NewA, 4, 141 https://doi.org/10.1016/S1384-1076(99)00018-4
  22. Govoni, F., Ensslin, T. A., Feretti, L., Giovannini, G., 2001, A&A, 369,441 https://doi.org/10.1051/0004-6361:20010115
  23. Jaffe, W. J., 1977, ApJ, 212, 1 https://doi.org/10.1086/155011
  24. Kang, H., Jones, T. W., 1995, ApJ, 447, 944 https://doi.org/10.1086/175932
  25. Kato, S., 1968, PASJ, 20, 59
  26. Komissarov, S. S., Gubanov, A. G., 1994, A&A, 285, 27
  27. Kulsrud, R. M., Ferrari, A., 1971, Ap&SS, 12, 302 https://doi.org/10.1007/BF00651420
  28. Kuo, P.-H., Hwang, C.-Y., Ip, W.-H., 2003, ApJ, 594, 732 https://doi.org/10.1086/376966
  29. Kuo, P.-H., Hwang, C.-Y., Ip, W.-H., 2004, ApJ, 604, 108 https://doi.org/10.1086/381744
  30. Mannheim, K, Schlickeiser, R., 1994, A&A, 286, 983
  31. Miller, J. A., Roberts, D. A., 1995, ApJ, 452, 912 https://doi.org/10.1086/176359
  32. Miniati, F.', Jones, T. W., Kang, H., Ryu, D., 2001, ApJ, 562, 233 https://doi.org/10.1086/323434
  33. Ohno, H., Takizawa, M., Shibata, S., 2002, ApJ, 577, 658 https://doi.org/10.1086/342224
  34. Petrosian, V., 2001, ApJ, 557, 560 https://doi.org/10.1086/321557
  35. Pfrommer, C., Ensslin, T. A., 2004, MNRAS, 352, 76 https://doi.org/10.1111/j.1365-2966.2004.07900.x
  36. Reimer, O., Pohl, M., Sreekumar, P., Mattox, J. R, 2003, ApJ, 588, 155 https://doi.org/10.1086/374046
  37. Reimer, A., Reimer, O., Schlickeiser, R., Iyudin, A., 2004, A&A, 424, 773 https://doi.org/10.1051/0004-6361:20041174
  38. Ricker, P. M., Sarazin, C. L., 2001, ApJ, 561, 621 https://doi.org/10.1086/323365
  39. Roettiger, K, Loken, C., Burns, J. O., 1997, ApJS, 109, 307 https://doi.org/10.1086/312979
  40. Rybicki, G. B., Lightman, A. P., 1979, 'Radiative Processes in Astrophysics', Wiley, New York
  41. Ryu, D., Kang H., Hallman E., Jone,s T, W., 2003, ApJ, 593, 599 https://doi.org/10.1086/376723
  42. Sarazin, C. L., 1999, ApJ 520, 529 https://doi.org/10.1086/307501
  43. Schlickeiser R, Sievers, A., Thiemann, H., 1987, A&A, 182, 21
  44. Schuecker, P., Bhringer, H., Reiprich, T. H., Feretti, L., 2001, A&A, 378, 408 https://doi.org/10.1051/0004-6361:20011215
  45. Schuecker, P., Finoguenov, A., Miniati, F., Boehringer, H., Briel, D. G., 2004, A&A, submitted; astro-ph/0404132
  46. Sunyaev, R. A., Norman, M. L., Bryan, G. L., 2003, Astronomy Letters, vol. 29, p. 783-790 https://doi.org/10.1134/1.1631411
  47. Thierbach, M., Klein, U., Wielebinski, R., 2003, A&A, 397, 53 https://doi.org/10.1051/0004-6361:20021474
  48. Tribble ,P, C., 1993, MNRAS, 263, 31 https://doi.org/10.1093/mnras/263.1.31
  49. V$\ddot{o}$lk, H. J., Aharonian, F. A., Breitschwerdt, D., 1996, SSRv, 75, 279
  50. V$\ddot{o}$lk, H. J., Atoyan, A. M., 1999, APh, 11, 73

Cited by

  1. DEEP 1.4 GHz FOLLOW-UP OF THE STEEP SPECTRUM RADIO HALO IN A521 vol.699, pp.2, 2009, https://doi.org/10.1088/0004-637X/699/2/1288
  2. An unlikely radio halo in the low X-ray luminosity galaxy cluster RXC J1514.9-1523 vol.534, 2011, https://doi.org/10.1051/0004-6361/201117820
  3. Clusters of galaxies: observational properties of the diffuse radio emission vol.20, pp.1, 2012, https://doi.org/10.1007/s00159-012-0054-z
  4. Radio signature of cosmological structure formation shocks vol.375, pp.1, 2007, https://doi.org/10.1111/j.1365-2966.2006.11111.x
  5. First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256 vol.543, 2012, https://doi.org/10.1051/0004-6361/201219154
  6. Observations of Extended Radio Emission in Clusters vol.134, pp.1-4, 2008, https://doi.org/10.1007/s11214-008-9311-x
  7. Structure and turbulence in simulated galaxy clusters and the implications for the formation of radio haloes vol.418, pp.4, 2011, https://doi.org/10.1111/j.1365-2966.2011.19637.x
  8. DISCOVERY OF MEGAPARSEC-SCALE, LOW SURFACE BRIGHTNESS NONTHERMAL EMISSION IN MERGING GALAXY CLUSTERS USING THE GREEN BANK TELESCOPE vol.779, pp.2, 2013, https://doi.org/10.1088/0004-637X/779/2/189
  9. Radio observations of Planck clusters vol.334, pp.4-5, 2013, https://doi.org/10.1002/asna.201211852
  10. High energy neutrinos from cosmic ray interactions in clusters of galaxies vol.73, pp.4, 2006, https://doi.org/10.1103/PhysRevD.73.043004
  11. Radio haloes from simulations and hadronic models - II. The scaling relations of radio haloes vol.407, pp.3, 2010, https://doi.org/10.1111/j.1365-2966.2010.17065.x
  12. Radio haloes from simulations and hadronic models – I. The Coma cluster vol.401, pp.1, 2010, https://doi.org/10.1111/j.1365-2966.2009.15655.x
  13. Non-Thermal Processes in Cosmological Simulations vol.134, pp.1-4, 2008, https://doi.org/10.1007/s11214-008-9319-2
  14. Alfvénic reacceleration of relativistic particles in galaxy clusters in the presence of secondary electrons and positrons vol.363, pp.4, 2005, https://doi.org/10.1111/j.1365-2966.2005.09511.x
  15. GAMMA RAYS FROM CLUSTERS OF GALAXIES vol.22, pp.04, 2007, https://doi.org/10.1142/S0217751X0703529X
  16. XMM‐NewtonandChandraObservations of Abell 2626: Interacting Radio Jets and Cooling Core with Jet Precession? vol.682, pp.1, 2008, https://doi.org/10.1086/588272
  17. LOFAR, VLA, ANDCHANDRAOBSERVATIONS OF THE TOOTHBRUSH GALAXY CLUSTER vol.818, pp.2, 2016, https://doi.org/10.3847/0004-637X/818/2/204
  18. IMPLICATIONS OFFERMIOBSERVATIONS FOR HADRONIC MODELS OF RADIO HALOS IN CLUSTERS OF GALAXIES vol.728, pp.1, 2011, https://doi.org/10.1088/0004-637X/728/1/53
  19. Probing the origin of giant radio haloes through radio and γ-ray data: the case of the Coma cluster vol.426, pp.2, 2012, https://doi.org/10.1111/j.1365-2966.2012.21785.x
  20. Hydrodynamical adaptive mesh refinement simulations of turbulent flows - II. Cosmological simulations of galaxy clusters vol.388, pp.3, 2008, https://doi.org/10.1111/j.1365-2966.2008.13518.x
  21. Diffuse radio emission in/around the Coma cluster: beyond simple accretion vol.412, pp.1, 2011, https://doi.org/10.1111/j.1365-2966.2010.17738.x
  22. Stochastic re-acceleration in the ICM vol.2, pp.14, 2006, https://doi.org/10.1017/S1743921307009982