• Title/Summary/Keyword: non-conformal contact

Search Result 8, Processing Time 0.017 seconds

*-CONFORMAL RICCI SOLITONS ON ALMOST COKÄHLER MANIFOLDS

  • Tarak Mandal;Avijit Sarkar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.865-880
    • /
    • 2023
  • The main intention of the current paper is to characterize certain properties of *-conformal Ricci solitons on non-coKähler (𝜅, 𝜇)-almost coKähler manifolds. At first, we find that there does not exist *-conformal Ricci soliton if the potential vector field is the Reeb vector field θ. We also prove that the non-coKähler (𝜅, 𝜇)-almost coKähler manifolds admit *-conformal Ricci solitons if the potential vector field is the infinitesimal contact transformation. It is also studied that there does not exist *-conformal gradient Ricci solitons on the said manifolds. An example has been constructed to verify the obtained results.

Non-Steady Elastohydrodynamic Lubrication Analysis on the Cam-Roller of Valve Mechanism for a Marine Diesel Engine (박용디젤기관 밸브기구용 캠-롤러 사이의 비정상상태 탄성유체윤활해석)

  • 구영필;강민호;이득우;조용주
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.201-207
    • /
    • 2000
  • The numerical procedure to analyze a non-steady 3-dimensional elastohydrodynamic lubrication on the cyclically loaded contact has been newly developed. The procedure was applied on the cam-roller contact of the valve mechanism for the marine diesel engine. Both the pressure distribution and the film thickness between the cam and roller follower were calculated for each time step of the whole cycle. The pressure spike is shown at the outlet of the roller edge and it is getting higher as the external load is increased. The film thicknesses in the result of the non-steady analysis have a tendency to increase compared to those in the result of the analysis with the assumption of steady state. Therefore, the surface roughness of the non-steady contact need not be limited below that of the steady contact of the equivalent operating conditions.

Study on the Enhancement of the Uniform Contact Technology for Large Scale Imprinting with the Design of Vacuum Gripping Pad (진공척 흡착패드 형태에 따른 대면적 임프린팅 균일 접촉 향상 연구)

  • Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.326-331
    • /
    • 2008
  • The contact surfaces between mold and target should be in parallel for a proper imprinting process. However, large size of contacting area makes it difficult for both mating surfaces (mold and target planes) to be in all uniform contact with the expected precision level in terms of thickness and position. This is caused by the waviness of mold and target although it is very small relative to the area scale. The gripping force for both mold and target by the vacuum chuck is other major effect to interrupt the uniform contact, which must be avoided in imprinting mechanism. In this study, the cause of non-conformal contact mechanism between mold and target is investigated with the consideration of deformation due to the vacuum gripping for the size $470{\times}370\;mm^2$ LCD panel.

Design Optimization of Fuel Sensor Location in Aircraft Conformal Fuel Tank (항공기 보조연료탱크의 연료량 측정센서 위치 최적설계)

  • Jung, Kyusung;Yang, Junmo;Lee, Sangchul;Yi, Yongsik;Lee, Jaewook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.332-337
    • /
    • 2018
  • This paper presents the design optimization of fuel sensor location used to measure remained fuel amount in aircraft conformal fuel tank. The conformal fuel tank is utilized to expand the mission range in airplane, and the sensor location is a critical design variable determining the measurement accuracy. In this work, the sensor location is optimized to minimize unmeasurable fuel amount due to non-contact between fuel and sensor. The simplified model is prepared from the conformal fuel tank CATIA model, and the unmeasurable fuel amount is calculated. Then, the optimization is performed using MATLAB optimization solver. The optimized sensor location is validated by comparing with the location obtained using parametric study.

Fabrication of Patchable Organic Lasing Sheets via Soft Lithography

  • Kim, Ju-Hyung
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.203-207
    • /
    • 2016
  • Here, we report a novel fabrication technique for patchable organic lasing sheet based on non-volatile liquid organic semiconductors and freestanding polymeric film with high flexibility and patchability. For this work, we have fabricated the second-order DFB grating structure, which leads to surface emission, embedded in the freestanding polymeric film. Using an ultra-violet (UV) curable polyurethaneacrylate (PUA) mixture, the periodic DFB grating structure can be easily prepared on the freestanding polymeric film via a simple UV curing process. Due to unsaturated acrylate remained in the PUA mixture after UV curing, the freestanding PUA film provides adhesive properties, which enable mounting of the patchable organic lasing sheet onto non-flat surfaces with conformal contact. To achieve laser actions in the freestanding resonator structure, a composite material of liquid 9-(2-ethylhexyl)carbazole (EHCz) and organic laser dyes was used as the laser medium. Since the degraded active materials can be easily refreshed by a simple injection of the liquid composite, such a non-volatile liquid organic semiconducting medium has degradation-free and recyclable characteristics in addition to other strong advantages including tunable optoelectronic responses, solvent-free processing, and ultimate mechanical flexibility and uniformity. Lasing properties of the patchable organic lasing sheet were also investigated after mounting onto non-flat surfaces, showing a mechanical tunability of laser emission under variable surface curvature. It is anticipated that these results will be applied to the development of various patchable optoelectronic applications for light-emitting displays, sensors and data communications.

Ink dependence of elastomeric stamp in non-photolithography

  • Kim, Jin-Ook;Park, Mi-Kyung;Lee, C.H.;Jo, G.C.;Chae, G.S.;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.919-921
    • /
    • 2005
  • We describe that an elastomeric stamp of poly(dimethylsiloxane) (PDMS) can modify the surface energy of some surfaces when brought into conformal contact with the number of stamping. We focus on an increase of the hydrophobicity of the patterned surface due to diffusion of low molecular weight (LMW) silicone polymer chains. The transfer of PDMS to the surface during patterning is relevant to and calls for attention by those who are using this method in applications where control of the surface chemistry is of importance for the application.

  • PDF

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.