• 제목/요약/키워드: non-cement binder

검색결과 43건 처리시간 0.019초

비소성 무기결합재를 사용한 무시멘트 다공성 식생콘크리트의 물리·역학적 특성 및 동결융해저항성 평가 (Physical, Mechanical Properties and Freezing and Thawing Resistance of Non-Cement Porous Vegetation Concrete Using Non-Sintering Inorganic Binder)

  • 김황희;김춘수;전지홍;박찬기
    • 한국농공학회논문집
    • /
    • 제56권5호
    • /
    • pp.37-44
    • /
    • 2014
  • The physical, mechanical and freezing and thawing properties of non cement porous vegetation concrete using non-sintering inorganic binder have been evaluated in this study. Four types of porous vegetation concrete according to the binder type is evaluated. The pH value, void ratio, compressive strength, repeated freezing and thawing properties were tested. The test results indicate that the physical, mechanical and repeated freezing and thawing properties of porous vegetation concrete using the non-sintering inorganic binder is increased or equivalent compared to the porous vegetation concrete using the blast furnace slag + cement and hwang-toh + cement binders. Also, Vegetation monitoring test results indicate the porous vegetation concrete using the non-sintering inorganic binder have increasing effects of vegetation growth.

산업부산물을 결합재로 이용한 콘크리트의 물리적 특성 (Physical Properties of Concrete using Industrial By-Products as Binder)

  • 강내민;문경주;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.79-82
    • /
    • 2003
  • In this study, non-sintering cement is produced by only blending granulate blast furnace slag with phosphogypsum as main materials, and small amounts of hydrate lime or waste lime as activators. This paper was investigated physical properties of fresh concrete and hardened concrete using non-clinker cement according to various mixing ratio. Results obtained from this study have shown that concrete using non-clinker cement could be used for structural concrete and concrete 2th production as binder.

  • PDF

순환유동층 보일러애시를 활용한 비소성 결합재 기초 특성 (Basic characteristic of non-sintered binder using by CFBC ash)

  • 강용학
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.225-226
    • /
    • 2017
  • Recently, there has been a growing interest in the development of non-sintered binder to reduce CO2 emissions from the cement clinker manufacturing process and a number of studies have been conducted on fly ashes as an industrial by-product. However, in order to utilize fly ashes as a non-sintered binder, it is necessary to solve problems such as safety issues and economical efficiency due to use of an alkali activator. This study evaluates the material properties and compressive strength characteristics of three types of circulating fluidized bed boiler ashes. As a result, it was confirmed that the characteristics of each binder vary depending on the location of the power plant and the types of raw materials. In addition, it has been confirmed that the fluidized bed boiler ash shows a high compressive strength and can be used sufficiently as an non-sintered binder.

  • PDF

고로슬래그와 플라이애시를 이용한 비소성 시멘트 모르타르의 유동화 특성 (Fluidization characteristics of Non-sirtered cement mortar using blast furnace slag and fly ash)

  • 변희재;나형원;형원길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.186-187
    • /
    • 2022
  • The purpose of this study was to give fluidizing properties to non-sirtered cement made using by-products that can replace Portland cement by using a fluidizing agent. Blast furnace slag, C-type fly ash, and F-type fly ash were used for non-sirtered cement, and sand was used for aggregate. The amount of fluidizing agent used was fixed at 1%, and the water-cement ratio (W/C) was different by setting the binder blending ratio of the non-sintered cement differently, and the fluidity test and flow were compared. As a result of the experiment, when the flow standard was 170mm when the fluidizing agent was used, the fluidizing properties were shown at an average water-cement ratio (W/C) of 36%. Through this study, it was confirmed that the fluidizing properties appeared when the fluidizing agent was used in non-sintered cement.

  • PDF

무시멘트 결합재를 사용한 지반 그라우팅용 약액주입재의 특성 (Properties of Liquid Chemical Grouting Material for Soil Grouting using Non-cement Binder)

  • 이재현;김용로;김규용;윤성진;문경주
    • 한국건축시공학회지
    • /
    • 제16권1호
    • /
    • pp.45-52
    • /
    • 2016
  • 본 연구에서는 무시멘트 결합재(NCB)를 사용한 지반 그라우팅용 약액주입재의 B액 결합재의 종류, 결합재의 W/B 및 A액과 B액의 부피비에 따른 겔타임 및 호모겔강도의 변화 특성을 검토함으로써 무시멘트 결합재의 지반 그라우팅용 결합재로서의 적용 가능성을 검토하고자 하였다. 무시멘트 무기결합재는 당사에서 공동연구를 통해 개발된 시멘트를 대체할 수 있는 고로슬래그 기반의 친환경 무기결합재로서 화학조성비가 다른 NCB-1, 2, 3을 사용하여 실험을 진행하였다. 실험 및 현장 적용성 분석 결과, 겔타임 및 호모겔강도의 요구성능을 확보할 수 있는 결합재 종류별 W/B 및 A액과 B액의 부피비가 도출되었으며, W/B가 100~140%, A : B가 50 : 50~30 : 70인 조건에서 급결구간 및 중결구간의 경우 NCB가 OPC 대비 동일한 겔타임 수준에서 호모겔강도의 확보가 유리한 것으로 평가되어 NCB의 지반 그라우팅용 결합재로서의 적용이 가능할 것으로 판단된다.

자연마섬유보강 비소성 무기결합재 다공성 콘크리트의 공극률, 압축강도 및 동결융해저항성 평가 (Void Ratio, Compressive Strength and Freezing and Thawing Resistance of Natural Jute Fiber Reinforced Non-Sintering Inorganic Binder Porous Concrete)

  • 김황희;김춘수;전지홍;박찬기
    • 한국농공학회논문집
    • /
    • 제57권2호
    • /
    • pp.67-73
    • /
    • 2015
  • This study evaluated the effects of fibers on the void ratio, compressive strength and repeated freezing and thawing resistance of porous vegetation concrete with binder type (non-sintering inorganic binder and blast furnace slag cement) and natural jute fiber volume fraction (0.0 %, 0.1 % and 0.2 %). The natural jute fiber volume fraction affected the void ratio, compressive strength and repeated freezing and thawing resistance. Added of natural jute fiber resulted in improved properties of the void ratio, compressive strength and freezing and thawing resistance. Also, the both compressive strength and freezing and thawing resistance increased with natural jute fiber volume fraction up to 0.1 % and then decreased with fiber volume fraction at 0.2 %.

경량 폴리머 콘크리트의 난연성 및 동결융해 저항성 (Incombustibility and Freezing-Thawing Resistance of Lightweight Polymer Concrete)

  • 채경희;최예환;연규석;이윤수;주명기
    • 한국농공학회지
    • /
    • 제45권1호
    • /
    • pp.45-54
    • /
    • 2003
  • The effects of binder content and silica sand content on the durability characteristics of lightweight polymer concretes are examined. As a result, the flame lingering times using unsaturated polyester resin and non-combustible polyester resin were 60∼120 and 0∼4 seconds respectively, and the combustion lengths were 9∼11 mm and 0∼3 mm, respectively. Thus it is believed that the lightweight polymer concrete was incombustible and the light weight polymer concrete in which non-combustible material was added was perfectly non-combustible. The percent of original mass of lightweight polymer concrete, according to the freezing-thawing experiment, was below 0.3 %, which was much less than that of cement concrete. The pluse velocity, for the case of the binder content 28 %, showed the minimum decreasing rate for the lightweight polymer concrete with silica sand content of 50 %. The higher the binder content, the greater the durability. That is much higher than other material and believed that the freezing-thawing was suppressed by a low absorption.

삼각조성도를 통한 3성분계 무시멘트 콘크리트의 압축강도 특성 연구 (A Study on the Compressive Strength Properties of the Ternary Blended Non-Cement Concrete using Ternary Diagram)

  • 정유진;김영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권2호
    • /
    • pp.41-49
    • /
    • 2020
  • 상온에서 발생하는 1, 2성분계 무시멘트 콘크리트의 강도저하 문제를 개선하기 위해 시멘트를 실리카 흄, 플라이애시, 고로슬래그 미분말로 치환한 3성분계 무시멘트 콘크리트의 슬럼프와 압축강도 특성을 통해 비교분석을 실시하여 다음과 같은 결론을 얻었다. 3성분계 무시멘트 콘크리트는 2성분계에 비해 높은 압축강도를 나타냈으며 실리카 흄을 10% 혼입한 경우 슬럼프 감소가 적은 것으로 나타났다. 또한, 삼각조성도를 통해 슬럼프 및 압축강도 수준별 각 무기결합재의 적정 구성비율 범위를 제시하였다.

노후 저수지 보강을 위한 환경 친화적 그라우팅 주입재 적용에 관한 기초연구 (A Fundamental Study on Application Eco Friendly Grouting Material for Old Aged Reserve Reinforcement)

  • 송상훤;전기표;임양현;서세관
    • 한국농촌건축학회논문집
    • /
    • 제21권2호
    • /
    • pp.35-42
    • /
    • 2019
  • There are 17,427 reservoirs in Korea, of which about 96% were built before the mid 1980s. Therefore, aging is severe and reinforcement are necessary. In addition, aged reservoirs, which are more than 50 years old, account for 70% of the total. Therefore, there is a problem such as the collapse of the reservoir and the decrease of the storage capacity due to progress of aging with time. The grouting method using cement is mainly used as maintenance and reinforcement method of old reservoir. However, the grouting method using cement has engineering and environmental problems. In order to solve the engineering and environmental problems of cement grouting method, an eco-friendly grouting material was developed that mixes circular resource grouting binder, high molar ratio sodium silicate and colloidal silica. The engineering and environmental properties of the developed injection materials were evaluated by conducting gel time, homo-gel strength, sea water resistance test and environmental stability evaluation. Also, examined the possibility of replacing OPC existing aged reservoir reinforcement methods. As a result, it was found out that it was better than the conventional cement method in terms of engineering and environment. However, since this study is the result of laboratory test, it is necessary of verify the application at field of aged reservoir.

비소성 시멘트 모르타르의 작업성 및 강도 개선을 위한 페로니켈슬래그 골재의 적용방안 (Application of Ferronickel Slag Aggregate to Improve Workability and Strength of Non-Sintered Cement Mortar)

  • 장경수;나형원;형원길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.309-310
    • /
    • 2023
  • Slag and ash generally have a higher powder degree than portland cement, so workability may deteriorate under the same unit quantity condition, and strength and durability decrease when the unit quantity is increased. At this time, if an aggregate having a low water absorption and an appropriate particle size is used to recover the loss of strength, it can contribute to reducing the unit quantity of the binder. Therefore, for the purpose of improving the workability and strength of non-sintered cement mortar using slag and ash, ferro nikel slag whose particle size was adjusted was used as an aggregate and its applicability was identified. In this experimental condition, it was confirmed that non-sintered cement mortar tends to improve workability and secure strength when ferro nikel slag having various particle size distributions is used as an aggregate. This can be analyzed as the effect of ferro nikel slag material properties including glassy properties and mixing conditions with a wide particle size distribution.

  • PDF