• Title/Summary/Keyword: non point source

Search Result 717, Processing Time 0.022 seconds

Importance of ICT as a Future Technology Source and the Promotion of Competitiveness (ICT 미래원천기술의 중요성 및 경쟁력 확보방안)

  • Ji, H.K.;Oh, D.K.;Kim, D.Y.;Hwang, D.H.;Cha, J.S.;Kim, J.T.;Choi, Y.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • Korea has pursued economic development based on ICT through R&D policy incorporating CDMA. However, the future society of the Fourth Industrial Revolution is expected to include a new type of industrial development that combines ICT with the non-ICT industry, making it impossible to secure national competitiveness without the source technology of the ICT industry. Therefore, in this thesis, we examine the ICT industry and ICT R&D policy from the point of view of the current ICT as a future source technology source of Korea, and identify strategies to determine ICT as a future technology source through a SWOT analysis.

Removal Efficiency of Non-point Source Pollutants through Constructed Wetland: Case Study of Annaecheon Wetland in Daecheong Reservoir (인공습지를 이용한 호소 유입 비점오염물질 제거 효율 평가: 대청호 안내천 습지 사례 분석)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.291-304
    • /
    • 2023
  • Harmful algal blooms (HABs) have become an increasing concern in terms of human health risks as well as aesthetic impairment due to their toxicity. The reduction of water pollutants, especially nutrients from non-point sources in a reservoir watershed, is fundamental for HABs prevention. We investigated the pollutant removal efficiencies of a constructed wetland to evaluate its feasibility as a method for controlling non-point sources located in the Annaecheon stream within the Daecheong Reservoir watershed. The overall removal efficiencies of pollutants were as follows: BOD 14.3%, COD 17.9%, SS 50.0%, T-N 19.0%, and T-P 35.4%. These results indicate that constructed wetlands are effective in controlling pollutants from non-point sources. The seasonal variation in removal efficiency depended on the specific pollutants. The removal efficiencies of BOD, COD, and T-N were stable throughout the year, except during winter, which might have been influenced by lower microorganism activity. In contrast, T-P showed a consistent removal efficiency even during the winter season, suggesting that the wetland can reduce external phosphorus loading to the reservoir. Regarding the effects of pollutant loadings on removal efficiency, the effluent concentrations of all pollutants were significantly decreased compared to those in the influent in case of middle and high loadings. This demonstrates that constructed wetlands can handle high pollutant loads, including the initial runoff during rainfall, to prevent reservoir eutrophication. Despite the various strengths of wetland water purification, there are limitations as passive treatment. Therefore, more case studies should be conducted to suggest optimum operational conditions for constructed wetlands, taking into consideration reservoir-specific characteristics.

Characteristics of Non-point Pollutants from the Road Runoff (1): Water Quality (도로노면 유출수의 비점오염원 배출 특성(1): 기본 수질 항목)

  • Park, Sangwoo;Oh, Jeill;Choi, Younghwa;Seo, Jeongwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.225-233
    • /
    • 2007
  • Road runoff water is one of the non-point sources (NPSs) of pollution negatively influencing drinking water source. Numerous road runoff NPS waters have been studied for over the last decade. However, the sources of pollution can be conditional, seasonal, or accidental. Therefore, measurement of pollutant loadings in different site is necessary to estimate the effect of road runoff water. The objective of this study was to examine the quality of road runoff water from a city bridge in Seoul, Korea. This study was conducted for two years to assess annual discharge pollution loads. In this study, key water quality parameters including chemical oxygen demand ($COD_{Cr}$), biochemcial oxygen demand ($BOD_5$), total nitrogen (T-N), total phosphorus (T-P), and suspended solid (SS) were measured at 18 different events. The results showed that typically the pollutant concentrations are higher at the beginning of each event and decrease afterwards. The first 20% of the volume of the runoff from each event is transporting 46% ($COD_{Cr}$), 48% ($BOD_5$), 50% (T-N), 34% (T-P), 30% (SS), respectively. The event mean concentrations (EMCs) were $COD_{Cr}$ (199 mg/L), $BOD_5$ (41.2 mg/L), T-N (7.97 mg/L), T-P (0.42 mg/L) and SS (113 mg/L). Although the results were consistent with the previous study (Barbosa and Hvitved-Jacobsen, 1999), $COD_{Cr}$, $BOD_5$, T-N exhibit a stronger first flush effect compared to the other contaminants.

Comparison of Non-Point Pollution Occurrence by Amount of Fertilizer Applicetion from Sandy Loam Alpine Fields which Cultivetes Poteto and Radish in Korea (감자와 무를 재배하는 사질양토 고랭지 밭의 시비량에 따른 비점오염 발생량 비교)

  • Choi, Yong Hun;Won, Chul Hee;Park, Woon Ji;Shin, Min Hwan;Shin, Jae Young;Lee, Su In;Yang, Hee Jeong;Choi, Joong Dae
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.40-49
    • /
    • 2012
  • This study was performed to monitor the runoff of sandy soils on alpine uplands between March 2008 and December 2009, and assess non-point source pollution load. The fields were used to cultivete poteto in 2008 and radish in 2009. The fertilizers used in 200S, compared to those used in 2009, contained 2.1 times of nitrogen, 1.9 times of phosphorous, and 2.3 times of potassium. In 2008, the annual pollution load indiceted SS 2,908.47kg/ha/yr, COD 67.95kg/ha/yr, BOD 50.72kg/ha/yr, TN l3.29kg/ha/yr, and TP 9.97kg/ha/yr. In 2009, the annual pollution load indiceted SS 3,908.34kg/ha/yr, COD 225.04kg/ha/yr, BOD 156.96kg/ha/yr, TN 18.88kg/ha/yr, and TP 36.41kg/ha/yr. The amount of fertilizers used was about twice greeter in 2008, but the amounts of TN in pollution load per unit of rainfall were similar by 0.031kg/ha/mm to 0.029kg/ha/mm, whereas the amounts of COD (0.16kg/ha/mm to 0.35kg/ha/mm), BOD (0.12kg/ha/mm to 0.24kg/ha/mm), and TP (0.023kg/ha/mm to 0.057kg/ha/mm) doubled in 2009. We can infer thet the surface covering by the growth of crop mainly affected the transport of T-N through the subsurface flow to reduce non-point source pollution.

  • PDF

Evaluation for Non-Point Sources Reduction Effect by Vegetated Ridge and Silt Fence (식생밭두렁과 실트펜스를 이용한 밭 비점오염 저감효과 평가)

  • Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.129-137
    • /
    • 2015
  • The objective of this study was to test the non-point source pollution (NPS) control by the vegetated ridge and silt fence through field monitoring. The experiment plots were established with three sizes which are 5 m width by 22 m length with 8 %, 3 % slope and 15m width by 15 m length with 6 % slope. Flumes with the floating type stage gages were installed at the outlet of each plot to monitor the runoff. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Water quality samples were monitored during the heavy rainfall occurred. The amount of rainfall from 4 monitored events ranged from 27.6 mm to 130 mm. The runoff reduction rate could vary depending on slope, soil, crop growth condition, rainfall amount, rainfall intensity, antecedent moisture condition, and many other factors. The runoff from vegetated ridge and silt fence treatment plots was 24.05 % and -8.28 % lower than that from control plot, respectively. The monitoring results showed that the average pollution loads reduced by vegetated ridge compared to control were BOD 36.62~53.60 %, SS 40.41~73.71 %, COD 39.34~56.41 %, DOC 49.08~53.67 %, TN 26.74~67.23 %, and TP 52.72~91.80 %; by silt fence compared to control were SS 41.73 %, COD 1.93 %, and TN 2.38 %. The paired t-test result indicated that the vegetated ridge and silt fence were statistically significant effect in SS load reduction, with a 5 % significant level. Monitored results indicated that vegetated ridge and silt fence were both effective to reduce the pollutant from the field surface runoff.

Characteristics of Non-Point Pollution from Road Surface Runoff

  • Lee, Chun-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.665-670
    • /
    • 2010
  • Pollutants from urban pavement consists various kinds of substances which are originated from dry deposition, a grind out tire, corrosive action of rain to pavement and facilities and raw materials of the road etc.. These are major pollutants of urban NPS (Non-point source) during rainfall period. However there is not enough information to control such pollutants for appropriate management of natural water quality. In this study of transportation areas, three monitoring stations were set up at trunk road, urban highway and national road in Gyeongnam province. Runoff flow rate was measured at every 15minutes by automatic flow meters installed at the end of storm sewer pipe within the road catchment area for water quality analysis. Data was collected every 15 minutes for initial two hours of rainfall. Additional samples were collected 1-4 hours interval till the end of rainfall. The monitoring parameters were $COD_{Mn}$, SS, T-N & T-P and heavy metals. The average EMCs of TSS and $COD_{Mn}$ were 62.0 mg/L and 24.2 mg/L on the city trunk road, which were higher than those of urban highway and national road, indicating higher pollutant loads due to activities in the city downtown area beside the vehicle. On the other hand, the average EMC of T-N and T-P were in the range of 2.67-3.23 mg/L and 0.19-3.21 mg/L for all the sampling sites. Heavy metals from the roads were mainly Fe, Zn, Cu and Mn, showing variable EMCs by the type of road. From the TSS wash-off analysis in terms of FF(first flush) index, first flush phenomenon was clearly observed in the trunk road(FF : 0.89-1.43). However, such mass delivery behavior was not apparently shown in urban highway(FF : 0.90-1.11) and national road(FF : 0.81-1.41).

Reduction Efficiency Analysis of Furrow Vegetation and PAM (Polyacrylamide) Mulching for Non-Point Source Pollution Load from Sloped Upland During Farming Season (경사밭 고랑 식생 및 PAM (Polyacrylamide) 멀칭에 따른 영농기 비점오염 저감효과 분석)

  • Yeob, So-Jin;Kim, Min-Kyeong;An, Nan-Hee;Choi, Soon-Kun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • As a result of climate change, non-point source pollution (NPS) from farmland with the steep slope during the rainy season is expected to have a significant impact on the water system. This study aimed to evaluate the effect of furrow mulching using alfalfa and PAM (Polyacrylamide) materials for each rainfall event, while considering the load characteristics of NPS. The study was conducted in Wanju-gun, Jeollabuk-do, in 2022, with a testbed that had a slope of 13%, sandy loam soil, and maize crops. The testbed was composed of four plots: bare soil (Bare), No mulching (Cont.), Vegetation mulching (VM), and PAM mulching (PM). Runoff was collected from each rainfall event using a 1/40 sampler and the NPS load was calculated by measuring the concentrations of SS, T-N, T-P, and TOC. During farming season, the reduction efficiency of NPS load was 37.1~59.5% for VM and 38.2~75.7% for PM. The analysis found that VM had a linear regression correlation (R2=0.28~0.86, P-value=0.01~0.1) with elapsed time of application, while PM had a quadratic regression correlation (R2=0.35~0.80, P-value=0.1). These results suggest that the selection of furrow mulch materials and the appropriate application method play a crucial role in reducing non-point pollution in farmland. Therefore, further studies on the time-series reduction effect based on the application method are recommended to develop more effective preemptive reduction technologies.

The characteristics of discharged non-point pollutants on Hwa-sung lake inflow streams on precipitation (화성호 유입하천의 강우시 비점오염물질 유출특성)

  • Lee, Sang Eun;Choi, I Song;Lee, In Ho;Hong, Dae Byuk;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.651-661
    • /
    • 2011
  • The purpose of this study is to estimate the characteristics and pollutant loadings of non-point pollutants that flowed in the streams on precipitation for pollutant loading reduction of Hwa-sung lake inflow streams. Although it has been made an effort to improve the water quality of Hwa-sung basin through the strategies for the preservation of water quality, it is shown that the water quality is not greatly improved. Because it has been industrialized and urbanized near Hwa-sung basin so that it is difficult to reduce the water pollution due to the increase in pollutant loadings of point and non-point sources. In this study, it is investigated the outflow characteristics of non-point pollutants that discharged with storm runoff and estimated the effect of runoff on Hwa-sung basin. The final goal of this study is to utilize the basic information for proper management and strategies of non-point sources on Hwa-sung basin. At the result of inflow streams, Ja-an stream that has the greatest pollutant loadings on precipitation is strongly influenced on the water quantity of Hwa-sung basin. On the other hand, it is shown that Nam-yang stream is strongly influenced on the SS concentration of Hwasung basin among them. Also, all streams; Nam-yang, Ja-ahn, Ah-eun stream; has the degree of slope more than or near 1 in the correlation results so that they have strong pollutant loading impact and the concentration of SS is the highest among other pollutants. So, specific studies on initial rain phenomena are more necessary to manage the pollutants economically. Also, the proper control of SS concentration is required to manage the effluent pollutants effectively on precipitation. So, it is necessary to consider the strategies for non-point pollutants as well as point pollutants when the new management is imposed to reduce the pollutant load for improvement of Hwa-sung basin.

Lake Water Quality Modelling Considering Rainfall-Runoff Pollution Loads (강우유출오염부하를 고려한 호수수질모델링)

  • Cho, Jae-Heon;Kang, Sung-Hyo
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • Water quality of the Lake Youngrang in the Sokcho City is eutrophic. Jangcheon is the largest inflow source to the lake. Major pollutant sources are stormwater runoff from resort areas and various land uses in the Jangcheon watershed. A storm sewer on the southern end of the lake is also an important pollution source. In this study, water quality modelling for Lake Youngrang was carried out considering the rainfall-runoff pollution loads from the watershed. The rainfall-runoff curves and the rainfall-runoff pollutant load curves were derived from the rainfall-runoff survey data during the recent 4 years. The rainfall-runoff pollution loads and flow from the Jangcheon watershed and the storm sewer were estimated using the two kinds of curves, and they were used as the flow and the boundary data of the WASP model. With the measured water quality data of the year 2005 and 2006, WASP model was calibrated. Non-point pollution control measures such as wet pond and infiltration trench were considered as the alternative for water quality management of the lake. The predicted water quality were compared with those under the present condition, and the improvement effect of the lake water quality were analyzed.

A Development of Washoff Model for Suspended Solids in Urban Areas (도시유역의 부유고형물 유출평가를 위한 쓸림모형 개발)

  • Joo, Jingul;Jung, Donghwi;Kim, Joonghoon;Park, Moojong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.789-795
    • /
    • 2010
  • Suspended Solid (SS) is one of the main pollutants and discharges with attached other pollutants such as heavy metal and toxic substance. It is very important to estimate and forecast the release characteristics of SS for water quality improvement. The current studies assumed that SS release rate is proportional to the rain intensity and suggested exponential washoff models. These models related to the shear force of flow. In this study, a new washoff model is suggested based on relation with SS release rate and mean flow rate of the basin surface which is closely related to the shear force. The proposed model is applied to the Goonja drainage district in Seoul, Korea. The new washoff model simulates the SS discharge more accurately in the various rainfall types. The model can be widely applied to the real problems such as the management of non-point source pollutant and the design of treatment facilities.