• Title/Summary/Keyword: non linear stability

Search Result 342, Processing Time 0.024 seconds

Why Are Cool Structures in the Universe Usually Filamentary?

  • Song, Inhyeok;Choe, Gwang Son;Yi, Sibaek;Jun, Hongdal
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.48.4-48.4
    • /
    • 2019
  • Small-scale shear flows are ubiquitous in the universe, and astrophysical plasmas are often magnetized. We study the thermal condensation instability in magnetized plasmas with shear flows in relation to filamentary structure formation in cool structures in the universe, representatively solar prominences and supernova remnants. A linear stability analysis is extensively performed in the framework of magnetohydrodynamics (MHD) with radiative cooling, plasma heating and anisotropic thermal conduction to find the eigenfrequencies and eigenfunctions for the unstable modes. For a shear velocity less than the Alfven velocity of the background plasma, the eigenvalue with the maximum growth rate is found to correspond to a thermal condensation mode, for which the density and temperature variations are anti-phased (of opposite signs). Only when the shear velocity in the k-direction is near zero, the eigenfunctions for the condensation mode are of smooth sinusoidal forms. Otherwise each eigenfunction for density and temperature is singular and of a discrete form like delta functions. Our results indicate that any non-uniform velocity field with a magnitude larger than a millionth of the Alfven velocity can generate discrete eigenfunctions of the condensation mode. We therefore suggest that condensation at discrete layers or threads should be quite a natural and universal process whenever a thermal instability arises in magnetized plasmas.

  • PDF

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

Development of Functional Modified Atmosphere Film for Winter Date (중국산 대추(Winter date)의 신선도 유지를 위한 기능성 MA필름 개발)

  • Park Hyung-Woo;Junfeng Guan;Kim Sang-Hee;Cha Hwan-Soo;Park Hye-Ran;Kim Yoon-Ho
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.125-130
    • /
    • 2006
  • In order to study the storage stability of winter date (Zizyphus jujuba Miller) with functional MA film storage, linear low density polyethylene $(LLDPE,\;30{\mu}m\;and\;60{\mu}m)$ film packaging and non-packaging were compared $30{\mu}m$ LLDPE packaging, $60{\mu}m$ LLDPE packaging and non-packaging samples were stored at $0^{\circ}C,\;8^{\circ}C$ (low temperature) and $25^{\circ}C$(room temperature) for 10 weeks. Weight loss of $30{\mu}m$ LLDPE packaging, $60{\mu}m$ LLDPE packaging and non-packaging in room temperature were decreased by 3.6% 0.4% and 36.1% respectively. Titratable acidity showed the trend of similarity in all treatment during the storage conditions, and especially LLDPE film packaging showed higher than non-packaging in the last storage. Soluble solids showed an increase in non-packaging, a decrease in LDPE film packaging highly. Vitamin C content showed the trend of decrease in all treatments, but non-packed jujubes sustained higher than LLDPE film packaging.

Genetic Transformation of the Yeast Dekkera/Brettanomyces bruxellensis with Non-Homologous DNA

  • Miklenic, Marina;Stafa, Anamarija;Bajic, Ana;Zunar, Bojan;Lisnic, Berislav;Svetec, Ivan-Kresimir
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.674-680
    • /
    • 2013
  • Yeast Dekkera/Brettanomyces bruxellensis is probably the most common contaminant in wineries and ethanol production processes. The considerable economic losses caused by this yeast, but also its ability to produce and tolerate high ethanol concentrations, make it an attractive subject for research with potential for industrial applications. Unfortunately, efforts to understand the biology of D. bruxellensis and facilitate its broader use in industry are hampered by the lack of adequate procedures for delivery of exogenous DNA into this organism. Here we describe the development of transformation protocols (spheroplast transformation, LiAc/PEG method, and electroporation) and report the first genetic transformation of yeast D. bruxellensis. A linear heterologous DNA fragment carrying the kanMX4 sequence was used for transformation, which allowed transformants to be selected on plates containing geneticin. We found the spheroplast transformation method using 1M sorbitol as osmotic stabilizer to be inappropriate because sorbitol strikingly decreases the plating efficiency of both D. bruxellensis spheroplast and intact cells. However, we managed to modify the LiAc/PEG transformation method and electroporation to accommodate D. bruxellensis transformation, achieving efficiencies of 0.6-16 and 10-20 transformants/${\mu}g$ DNA, respectively. The stability of the transformants ranged from 93.6% to 100%. All putative transformants were analyzed by Southern blot using the kanMX4 sequence as a hybridization probe, which confirmed that the transforming DNA fragment had integrated into the genome. The results of the molecular analysis were consistent with the expected illegitimate integration of a heterologous transforming fragment.

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

Free-standing Three Dimensional Graphene Incorporated with Gold Nanoparticles as Novel Binder-free Electrochemical Sensor for Enhanced Glucose Detection

  • Bui, Quoc Bao;Nguyen, Dang Mao;Nguyen, Thi Mai Loan;Lee, Ku Kwac;Kim, Hong Gun;Ko, Sang Cheol;Jeong, Hun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.229-237
    • /
    • 2018
  • The electrochemical sensing performance of metal-graphene hybrid based sensor may be significantly decreased due to the dissolution and aggregation of metal catalyst during operation. For the first time, we developed a novel large-area high quality three dimensional graphene foam-incorporated gold nanoparticles (3D-GF@Au) via chemical vapor deposition method and employed as free-standing electrocatalysis for non-enzymatic electrochemical glucose detection. 3D-GF@Au based sensor is capable to detect glucose with a wide linear detection range of $2.5{\mu}M$ to 11.6 mM, remarkable low detection limit of $1{\mu}M$, high selectivity, and good stability. This was resulted from enhanced electrochemical active sites and charge transfer possibility due to the stable and uniform distribution of Au NPs along with the enhanced interactions between Au and GF. The obtained results indicated that 3D-GF@Au hybrid can be expected as a high quality candidate for non-enzymatic glucose sensor application.

Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow

  • Hosseini, Mohammad;Arani, Ali Ghorbanpour;Karamizadeh, Mohammad Reza;Afshari, Hassan;Niknejad, Shahriar
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.457-469
    • /
    • 2019
  • In this paper, a numerical solution is presented for supersonic flutter analysis of cantilever non-symmetric functionally graded (FG) sandwich plates. The plate is considered to be composed of two different functionally graded face sheets and an isotropic homogeneous core made of ceramic. Based on the first order shear deformation theory (FSDT) and linear piston theory, the set of governing equations and boundary conditions are derived. Dimensionless form of the governing equations and boundary conditions are derived and solved numerically using generalized differential quadrature method (GDQM) and critical velocity and flutter frequencies are calculated. For various values of the yaw angle, effect of different parameters like aspect ratio, thickness of the plate, power law indices and thickness of the core on the flutter boundaries are investigated. Numerical examples show that wings and tail fins with larger length and shorter width are more stable in supersonic flights. It is concluded for FG sandwich plates made of Al-Al2O3 that increase in volume fraction of ceramic (Al2O3) increases aeroelastic stability of the plate. Presented study confirms that improvement of aeroelastic behavior and weight of wings and tail fins of aircrafts are not consistent items. It is shown that value of the critical yaw angle depends on aspect ratio of the plate and other parameters including thickness and variation of properties have no considerable effect on it. Results of this paper can be used in design and analysis of wing and tail fin of supersonic airplanes.

Retention Behavior of Lanthanide Complexes with $\alpha$ -hydroxyisobutyric Acid on Cation Exchanger (양이온 교환체에서 희토류원소와 $\alpha$-Hydroxyisobutyric Acid 착물들의 머무름 거동에 관한 연구)

  • Jo, Gi Su;Han, Seon Ho;Seo, Mu Yeol;Eom, Tae Yun;Kim, Yeon Du
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.582-592
    • /
    • 1990
  • Retention behavior of lanthanide-$\alpha$HiBA complexes was studied on the cation exchanger (LC-18 coated with $C_{20}H_{41}SO_4^-$). An equation predicting retention of lanthanides in isocratic or gradient elution with sodium ion and $\alpha$-HiBA concentration was derived from ion exchange equilibria of metal-ligand complex system, respectively. The relations between log k' and log [Na$^+$] /log [$\alpha$-HiBA) showed non-linearity in isocratic elution. In gradient elution a good linearity between log k' vs log R was obtained. The values of slopes (log k / log R) gave good agreements between calculation and experiment. Individual capacity factors ($k'_{Ln}^{3+}, k'_{LnL}^{2+}, k'{LnL2+}) and stability constant (${\beta}_1$, ${\beta}_2$, ${\beta}_3$) of lanthanide-$\alpha$HiBA complexes were calculated by the non-linear least square fittings using the retention equation. The correlation coefficients of lanthanides were shown better than 0.9996 between experiment and calculation.

  • PDF

Nanostructured Metal Organic Framework Modified Glassy Carbon Electrode as a High Efficient Non-Enzymatic Amperometric Sensor for Electrochemical Detection of H2O2

  • Naseri, Maryam;Fotouhi, Lida;Ehsani, Ali
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • Metal-organic frameworks have recently been considered very promising modifiers in electrochemical analysis due to their unique characteristics among which tunable pore sizes, crystalline ordered structures, large surface areas and chemical tenability are worth noting. In the present research, $Cu(btec)_{0.5}DMF$ was electrodeposited on the surface of glassy carbon electrode at room temperature under cathodic potential and was initially used as the active materials for the detection of $H_2O_2$. The cyclic voltammogram of $Cu(btec)_{0.5}DMF$ modified GC electrode shows distinct redox peaks potentials at +0.002 and +0.212 V in 0.1 M phosphate buffer solution (pH 6.5) corresponding to $Cu^{(II)}/Cu^{(I)}$ in $Cu(btec)_{0.5}DMF$. Acting as the electrode materials of a non-enzymatic $H_2O_2$ biosensor, the $Cu(btec)_{0.5}DMF$ brings about a promising electrocatalytic performance. The high electrocatalytic activity of the $Cu(btec)_{0.5}DMF$ modified GC electrode is demonstrated by the amperometric response towards $H_2O_2$ reduction with a wide linear range from $5{\mu}M$ to $8000{\mu}M$, a low detection limit of $0.865{\mu}M$, good stability and high selectivity at an applied potential of -0.2 V, which was higher than some $H_2O_2$ biosensors.

Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory

  • Tebboune, Wafa;Benrahou, Kouider Halim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.443-465
    • /
    • 2015
  • In this paper, an efficient and simple trigonometric shear deformation theory is presented for thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and stability equations of plates made of functionally graded materials are derived. The boundary conditions for the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and thickness ratio on the critical buckling temperature of functionally graded plates are investigated and discussed.