Kim, Hee-Hoon;Kang, Seung-Hyo;Park, Jai-Hyun;Ha, Hyun-Ho;Lim, Dong-Hoon
The Korean Journal of Applied Statistics
/
v.25
no.4
/
pp.669-680
/
2012
Noise removal of document images is a necessary step during preprocessing to recognize characters effectively because it has influences greatly on processing speed and performance for character recognition. We have considered using the spatial filters such as traditional mean filters and Gaussian filters, and wavelet transformed based methods for noise deduction in natural images. However, these methods are not effective for the noise removal of document images. In this paper, we present noise removal of document images using support vector regression. The proposed approach consists of two steps which are SVR training step and SVR test step. We construct an optimal prediction model using grid search with cross-validation in SVR training step, and then apply it to noisy images to remove noises in test step. We evaluate our SVR based method both quantitatively and qualitatively for noise removal in Korean, English and Chinese character documents, and compare it to some existing methods. Experimental results indicate that the proposed method is more effective and can get satisfactory removal results.
Havashinejadian, E.;Danaee, I.;Eskandari, H.;Nikmanesh, S.
Journal of Electrochemical Science and Technology
/
v.8
no.2
/
pp.115-123
/
2017
Electrochemical noise signals in many cases exhibit a DC drift that should be removed prior to further data analysis. Polynomial fitting and moving average removal method have been used to remove trends of electrochemical noise (EN) in time domain. The corrosion inhibition of synthesized schiff base N,N'-bis(3,5-dihydroxyacetophenone)-2,2-dimethylpropandiimine on API-5L-X70 steel in hydrochloric acid solutions were used to study the effects of drifts removal methods on noise resistance calculation. Also, electrochemical impedance spectroscopy (EIS) was used to study the corrosion inhibition property of the inhibitor. The results showed that for the calculation of $R_n$, both methods were effective in trend removal and the polynomial with m=4 and MAR with p=40 were in agreement.
FMCW (Frequency Modulated Continuous Wave) radar system is widely used in autonomous driving and navigation applications due to its high detection capabilities independent of weather conditions and environments. However, radar signals can be easily contaminated by various noises such as speckle noise, receiver saturation, and multipath reflection, which can worsen sensing performance. To handle this problem, we propose a learning-free noise removal technique for radar to enhance detection performance. The proposed method leverages adaptive thresholding to remove speckle noise and receiver saturation, and wavelet transform to detect multipath reflection. After noise removal, the radar image is reconstructed with the geometric structure of the surrounding environments. We verify that our method effectively eliminated noise and can be applied to autonomous driving by improving the accuracy of odometry and place recognition.
International Journal of Knowledge Content Development & Technology
/
v.5
no.2
/
pp.11-24
/
2015
It is common for archive libraries to provide public access to historical and ancient document image collections. It is common for such document images to require specialized processing in order to remove background noise and become more legible. Document images may be contaminated with noise during transmission, scanning or conversion to digital form. We can categorize noises by identifying their features and can search for similar patterns in a document image to choose appropriate methods for their removal. In this paper, we propose a hybrid binarization approach for improving the quality of old documents using a combination of global and local thresholding. This article also reviews noises that might appear in scanned document images and discusses some noise removal methods.
Noise band removal is a crucial step before spectral matching since the noise bands can distort the typical shape of spectral reflectance, leading to degradation on the matching results. This paper proposes a statistical noise band removal method for hyperspectral data using the correlation coefficient between two bands. The correlation coefficient measures the strength and direction of a linear relationship between two random variables. Considering each band of the hyperspectral data as a random variable, the correlation between two signal bands is high; existence of a noisy band will produce a low correlation due to ill-correlativeness and undirected ness. The unsupervised k-nearest neighbor clustering method is implemented in accordance with three well-accepted spectral matching measures, namely ED, SAM and SID in order to evaluate the validation of the proposed method. This paper also proposes a hierarchical scheme of combining those measures. Finally, a separability assessment based on the between-class and the within-class scatter matrices is followed to evaluate the applicability of the proposed noise band removal method. Also, the paper brings out a comparison for spectral matching measures. The experimental results conducted on a 228-band hyperspectral data show that while the SAM measure is rather resistant, the performance of SID measure is more sensitive to noise.
KIEE International Transaction on Systems and Control
/
v.2D
no.2
/
pp.115-119
/
2002
In this paper we present a generalized directional morphological filtering algorithm for the removal of impulse noise, which is based on a combination of impulse noise detection and a weighted rank-order morphological filtering technique. For salt (or pepper) noise suppression, the generalized directional opening (or closing) filtering of the input signal is selectively used. The detection of impulse noise can be done by the geometrical difference of opening and closing filtering. Simulations show that this new filter has better detail feature preservation with effective noise reduction compared to other nonlinear filtering techniques.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.253-255
/
2022
Thanks to the 4th industrial revolution and the development of various communication media, technologies such as artificial intelligence and automation are being grafted into industrial sites in various fields, and accordingly, the importance of data processing is increasing. Image noise removal is a pre-processing process for image processing, and is mainly used in fields requiring high-level image processing technology. Various studies have been conducted to remove noise, but various problems arise in the process of noise removal, such as image detail preservation, texture restoration, and noise removal in a special area. In this paper, we propose a switching mask filter based on the noise intensity to preserve the detailed image information during the impulse noise removal process. The proposed filter algorithm obtains the final output by switching to the extended mask when it is determined that the density is higher than the reference value when noise is determined in the area designated as the filtering mask. Simulation was conducted to evaluate the performance of the proposed algorithm, and the performance was analyzed compared to the existing method.
The existence of noise bands may deform the typical shape of the spectrum, making the accuracy of clustering degraded. This paper proposes a statistical approach to remove noise bands in hyperspectral data using the correlation coefficient of bands as an indicator. Considering each band as a random variable, two adjacent signal bands in hyperspectral data are highly correlative. On the contrary, existence of a noise band will produce a low correlation. For clustering, the unsupervised ${\kappa}$-nearest neighbor clustering method is implemented in accordance with three well-accepted spectral matching measures, namely ED, SAM and SID. Furthermore, this paper proposes a hierarchical scheme of combining those measures. Finally, a separability assessment based on the between-class and the within-class scatter matrices is followed to evaluate the applicability of the proposed noise band removal method. Also, the paper brings out a comparison for spectral matching measures.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.1C
/
pp.17-23
/
2010
In this paper, we present an adaptive noise removal method using local statistics and generalized Gaussian filter. we propose a generalized Gaussian filter for removing noise effectively and detecting noise adaptively using local statistics based human visual system. The simulation results show the objective and subjective capabilities of the proposed algorithm.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.484-486
/
2018
Recently, with the increase in use of digital equipment in various fields, the importance of image and signal processing is increasing. However, many types of noise are generated during transmission and reception of digital signal, causing errors. For this reason, noise removal is mandatorily performed during pre-processing phase in many fields. In the present paper, noise is classified through noise evaluation, and noise removal is performed to remove impulse noise and noise with AWGN-added noise. And, proposed is an algorithm which utilizes modified Gaussian filter and directional effective pixels according to noise type. Simulation results show superior noise-removal characteristics, and for objective evaluation, compared with conventional methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.