• Title/Summary/Keyword: noise margin

Search Result 187, Processing Time 0.024 seconds

A Protection Ratio with Composite Fade Margin for Detailed Frequency Coordination in Microwave Relay System Network

  • Suh, Kyoung-Whoan
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.83-90
    • /
    • 2007
  • In this paper, the formulation of the protection ratio based upon a composite fade margin and availability is newly presented for the detailed planning of frequency coordination in the microwave relay system network, and computed results for co-channel and adjacent channel protection ratios are illustrated over an actual system with 6.2 GHz. It is shown that the protection ratio to assure a quality of service can be expressed in terms of the composite fade margin, noise-to-interference ratio, net filter discrimination, and system parameters. In addition, the net filter discrimination, depending upon the transmitter spectrum mask and the overall receiver filter characteristic, has been examined to investigate the effect of the adjacent channel protection ratio caused by the adjacent channel interference. Regarding simulated results for 6.2 GHz, 60 km, 64-QAM, and N/I=6 dB at the bit error rate of $10^{-6}$, composite fade margin and co-channel protection ratio yield 25.14 and 50.3 dB, respectively. Also, the net filter discrimination of 26.5 dB and the adjacent channel protection ratio of 23.8 dB are obtained at the first adjacent channel of 30 MHz. The proposed method provides some merits in view of a comprehensive and practical application with more detailed and various system parameters needed to access the criteria for making the proper frequency coordination.

EMC Compatability Analysis on Geostationary Satellite (정지궤도 인공위성의 전자파 호환성 해석)

  • Chae, Tae-Byeong;Oh, Seung-Hyeub
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1207-1215
    • /
    • 2008
  • Satellite generates a complex electromagnetic noise by conducted and radiated coupling effect of the various electrical instruments. This noise may cause serious problems on the satellite system. To minimize the electromagnetic coupling effects and maintain the system safety margin, system noise reduction technique should be applied from the beginning of the system design. The COMS system is evaluated by measuring the conducted noise on system electrical power leads at PSR(Power Supply Regulator) and verifying a 6 dB system safety margin under the complex noise environment with current injection. The radiated noise due to the complex transmit antenna configuration is evaluated by integrating all unit-level RE measurement results, and the RF compatibility between spacecraft and launch vehicle is analyzed with the above estimations. This paper describes the COMS EMC compatibility analysis with respect to each unit level EMC test results, and RF compatibility analysis between spacecraft and launch vehicle. The analyzed results will be reflected on FM(Flight Model) EMC test.

A 0.8-V Static RAM Macro Design utilizing Dual-Boosted Cell Bias Technique (이중 승압 셀 바이어스 기법을 이용한 0.8-V Static RAM Macro 설계)

  • Shim, Sang-Won;Jung, Sang-Hoon;Chung, Yeon-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • In this paper, an ultra low voltage SRAM design method based on dual-boosted cell bias technique is described. For each read/write cycle, the wordline and cell power node of the selected SRAM cells are boosted into two different voltage levels. This enhances SNM(Static Noise Margin) to a sufficient amount without an increase of the cell size, even at sub 1-V supply voltage. It also improves the SRAM circuit speed owing to increase of the cell read-out current. The proposed design technique has been demonstrated through 0.8-V, 32K-byte SRAM macro design in a $0.18-{\mu}m$ CMOS technology. Compared to the conventional cell bias technique, the simulation confirms an 135 % enhancement of the cell SNM and a 31 % faster speed at 0.8-V supply voltage. This prototype chip shows an access time of 23 ns and a power dissipation of $125\;{\mu}W/Hz$.

Development of Program for Substation Noise Prediction (변전소 소음예측 프로그램 개발)

  • Koo, Kyo-Sun;Kweon, Dong-Jin;Woo, Jung-Wook;Kwak, Joo-Sik;Kang, Yeon-Woog
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1556-1560
    • /
    • 2007
  • Energized power transformers in substations make unwelcome noises which propagate to nearby residential areas. As the excessive noise level become a target of public grievance than ever, utilities are seeking solutions to it. This paper introduce a power transformer noise prediction program which can give utilities effective solutions. Once a noise source is given, the program calculates the propagated noise level at certain points. The estimated result is rendered as noise contour map. To validate the accuracy of the program, the predicted noises are compared to measured one in real substations and proven to be acceptable within a margin of 5 percent.

초 저 소비전력 및 저 전압 동작용 FULL CMOS SRAM CELL에 관한 연구

  • 이태정
    • The Magazine of the IEIE
    • /
    • v.24 no.6
    • /
    • pp.38-49
    • /
    • 1997
  • 0.4mm Resign Rule의 Super Low Power Dissipation, Low Voltage. Operation-5- Full CMOS SRAM Cell을 개발하였다. Retrograde Well과 PSL(Poly Spacer LOCOS) Isolation 공정을 사용하여 1.76mm의 n+/p+ Isolation을 구현하였으며 Ti/TiN Local Interconnection을 사용하여 Polycide수준의 Rs와 작은 Contact저항을 확보하였다. p-well내의 Boron이 Field oxide에 침적되어 n+/n-well Isolation이 취약해짐을 Simulation을 통해 확인할 수 있었으며, 기생 Lateral NPN Bipolar Transistor의 Latch Up 특성이 취약해 지는 n+/n-wellslze는 0.57mm이고, 기생 Vertical PNP Bipolar Transistor는 p+/p-well size 0.52mm까지 안정적인 Current Gain을 유지함을 알 수 있었다. Ti/TiN Local Interconnection의 Rs를 Polycide 수준으로 낮추는 것은 TiN deco시 Power를 증가시키고 Pressure를 감소시킴으로써 실현할 수 있었다. Static Noise Margin분석을 통해 Vcc 0.6V에서도 Cell의 동작 Margin이 있음을 확인할 수 있었으며, Load Device의 큰 전류로 Soft Error를 개선할수 있었다. 본 공정으로 제조한 1M Full CMOS SRAM에서 Low Vcc margin 1.0V, Stand-by current 1mA이하(Vcc=3.7V, 85℃기준) 를 얻을 수 있었다.

  • PDF

An Experimental Study on the Modal Test of Gas Turbine Blade Integrity (가스터빈 블레이드 MODAL TEST를 위한 실험적 방법에 관한 연구)

  • 조철환;양경현;김성휘
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1388-1392
    • /
    • 2001
  • In this paper, an experimental method of several modal analyses was devised to iify the vibration characteristics of G/T blade in power plants. Also, it is being applied this method to establish the standard category of natural frequency of new developed blades. So acceptance margin to avoid resonance due to nozzle waking force is being established for new blades. It is expected to improve the availability of G/T blades by using the result of this study.

  • PDF

An Experimental Study on Evaluation of Gas Turbine Blade Integrity (가스터빈 블레이드의 건전성 평가를 위한 실험적 연구)

  • Cho, Cheul-Whan;Yang, Kyeong-Hyeon;Won, Jong-Bum;Kim, Sung-Hwi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.618-622
    • /
    • 2000
  • An experimental method is devised to identify the vibration characteristics of G/T blade in power plants. The acceptance margin to avoid resonance due to nozzle waking force is established and evaluated by suggested method. It is expected that improvement of turbine availability and the localization of blade can be achieved by using the result of this study.

  • PDF

A 15 nm Ultra-thin Body SOI CMOS Device with Double Raised Source/Drain for 90 nm Analog Applications

  • Park, Chang-Hyun;Oh, Myung-Hwan;Kang, Hee-Sung;Kang, Ho-Kyu
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.575-582
    • /
    • 2004
  • Fully-depleted silicon-on-insulator (FD-SOI) devices with a 15 nm SOI layer thickness and 60 nm gate lengths for analog applications have been investigated. The Si selective epitaxial growth (SEG) process was well optimized. Both the single- raised (SR) and double-raised (DR) source/drain (S/D) processes have been studied to reduce parasitic series resistance and improve device performance. For the DR S/D process, the saturation currents of both NMOS and PMOS are improved by 8 and 18%, respectively, compared with the SR S/D process. The self-heating effect is evaluated for both body contact and body floating SOI devices. The body contact transistor shows a reduced self-heating ratio, compared with the body floating transistor. The static noise margin of an SOI device with a $1.1\;{\mu}m^2$ 6T-SRAM cell is 190 mV, and the ring oscillator speed is improved by 25 % compared with bulk devices. The DR S/D process shows a higher open loop voltage gain than the SR S/D process. A 15 nm ultra-thin body (UTB) SOI device with a DR S/D process shows the same level of noise characteristics at both the body contact and body floating transistors. Also, we observed that noise characteristics of a 15 nm UTB SOI device are comparable to those of bulk Si devices.

  • PDF

Equalization Digital On-Channel Repeater Part 2 : Field Test Results (등화형 디지털 동일 채널 중계기 Part 2 : 필드 테스트 결과)

  • Park Sung Ik;Lee Yong-Tae;Eum Homin;Seo Jae Hyun;Kim Heung Mook;Kim Seung Won;Lee Soo-In
    • Journal of Broadcast Engineering
    • /
    • v.10 no.2
    • /
    • pp.221-237
    • /
    • 2005
  • This paper presents and analyzes field test results of Equalization Digital On-Channel Repeater (EDOCR) using ATSC(Advanced Television Systems Committee) terrestrial digital TV broadcasting system. In the field test, according to EDOCR On/Off, types of antennas and receivers we measured reception possibility, C/N(Carrier to Noise Ratio), reception power, noise and input margin at each test point. By the field test results, the reception rate of the receiver manufactured in 2004 was $33\%$ when EDOCR is off and directional antenna is used. However, the reception rate was $100\%$ when EDOCR is on. In addition, the noise margin, which determines reception quality was increased at least 6 dB, so that it is capable of constructing SFN(Single Frequency Network) using the EDOCR.

Virtual Monochromatic Image Quality from Dual-Layer Dual-Energy Computed Tomography for Detecting Brain Tumors

  • Shota Tanoue;Takeshi Nakaura;Yasunori Nagayama;Hiroyuki Uetani;Osamu Ikeda;Yasuyuki Yamashita
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.951-958
    • /
    • 2021
  • Objective: To evaluate the usefulness of virtual monochromatic images (VMIs) obtained using dual-layer dual-energy CT (DL-DECT) for evaluating brain tumors. Materials and Methods: This retrospective study included 32 patients with brain tumors who had undergone non-contrast head CT using DL-DECT. Among them, 15 had glioblastoma (GBM), 7 had malignant lymphoma, 5 had high-grade glioma other than GBM, 3 had low-grade glioma, and 2 had metastatic tumors. Conventional polychromatic images and VMIs (40-200 keV at 10 keV intervals) were generated. We compared CT attenuation, image noise, contrast, and contrast-to-noise ratio (CNR) between tumor and white matter (WM) or grey matter (GM) between VMIs showing the highest CNR (optimized VMI) and conventional CT images using the paired t test. Two radiologists subjectively assessed the contrast, margin, noise, artifact, and diagnostic confidence of optimized VMIs and conventional images on a 4-point scale. Results: The image noise of VMIs at all energy levels tested was significantly lower than that of conventional CT images (p < 0.05). The 40-keV VMIs yielded the best CNR. Furthermore, both contrast and CNR between the tumor and WM were significantly higher in the 40 keV images than in the conventional CT images (p < 0.001); however, the contrast and CNR between tumor and GM were not significantly different (p = 0.47 and p = 0.31, respectively). The subjective scores assigned to contrast, margin, and diagnostic confidence were significantly higher for 40 keV images than for conventional CT images (p < 0.01). Conclusion: In head CT for patients with brain tumors, compared with conventional CT images, 40 keV VMIs from DL-DECT yielded superior tumor contrast and diagnostic confidence, especially for brain tumors located in the WM.