• Title/Summary/Keyword: nitrogen plasma

Search Result 638, Processing Time 0.023 seconds

Relationships between Methionine Supply, Nitrogen Retention and Plasma Insulin-like Growth Factor-I in Growing Sheep Nourished by Total Intragastric Infusions

  • Li, Chong;Zhao, Guangyong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.10
    • /
    • pp.1393-1398
    • /
    • 2011
  • Four 4-month old Charolais${\times}$Dorset male sheep (initial liveweight $25.0{\pm}1.1\;kg$), fitted with rumen and abomasal fistulas and nourished by total intragastric infusions, were used to study the relationships between methionine (Met) supply, nitrogen (N) retention and plasma insulin-like growth factor-I (IGF-I). Four graded levels of Met, i.e. 0 g/16 g N, 1.76 g/16 g N, 3.52 g/16 g N and 7.04 g/16 g N, were infused into abomasums as experimental treatments. The sheep and treatments were allocated in a $4{\times}3$ incomplete Latin square design (Yudon square design). The experiment lasted 3 periods and each period was 10 days. Quadratic correlations were found between Met level (x, g/16 g N) and N retention (y, g/d): y = $-0.03x^2$+0.41x+2.62, $r^2$ = 0.66, n = 12, p = 0.008, and between methionine level (x, g/16 g N) and plasma IGF-I concentration (y, ng/ml): y = $0.80x^2$-4.53x+190.24, $r^2$ = 0.51, n = 12, p = 0.009. No significant correlation was found between plasma IGF-I (x, ng/ml) and N retention (y, g/d) (p>0.05). It was concluded that Met level had a significant influence on N retention and plasma IGF-I concentration whereas IGF-I might not be an important mediator in the regulation of N metabolism by Met in growing sheep nourished by total intragastric infusions.

Study on the Wear Resistant Characteristics of Medium Carbon Alloy Steel Plasma-Nitrided (플라즈마 질화처리된 중탄소합금강의 내마모특성에 관한 연구)

  • Cho, H.S.;Roh, Y.S.;Shin, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.4
    • /
    • pp.215-223
    • /
    • 1992
  • This study has been performed to investigate into some effects of temperature, gas mixing ratio and time on the optical microstructure, hardness and wear characteristics of medium carbon alloy steel treated by plasma nitriding. The results obtained from the experiment are summarized as follows: (1) Optical micrographs of AISI 4140 steel plasma-nitrided by the double stage technique have revealed that the nitrided layer is composed of the compound layer and the diffusion layer. The variation in temperature at the first stage gives effects, on the formation of compound layer and the growth rate is shown to be relatively fast at $460^{\circ}C$. (2) The thickness of compound layer has been found to increase with increasing nitrogen percentage in the gas mixture and the holding time. It is therefore recommended that a shorter holding time and a lower nitrogen percentage are more effective to produce a tougher compound layer and a diffusion layer only. (3) X-ray diffraction analysis for AISI 4140 steel has shown that the compound layer consist of ${\gamma}^{\prime}-Fe_4N$ and ${\alpha}-Fe$ and that tough compound layer diffustion layer only can be obtained by the double stage plasmanitriding process. (4) There is also a tendency that the total hardened layer depth increases with increasing temperature, time and nitrogen percentage in the first stage during the double stage plasma nitriding. (5) The wear resistance of plasma nitrided specimens has been found thobe considerably increased compared to the untreated specimens and the amount of increment has appeared to increase further with increasing nitriding temperature, holding time and notrogen percentage of gas mixture in the first stage treatment.

  • PDF

Silicon Oxidation in Inductively-Coupled N2O Plasma and its Effect on Polycrystalline-Silicon Thin Film Transistors (유도결합 N2O 플라즈마를 이용한 실리콘 산화막의 저온성장과 다결정 실리콘 박막 트랜지스터에의 영향)

  • Won, Man-Ho;Kim, Sung-Chul;Ahn, Jin-Hyung;Kim, Bo-Hyun;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.724-728
    • /
    • 2002
  • Inductively-coupled $N_2$O plasma was utilized to grow silicon dioxide at low temperature and applied to fabricate polycrystalline-silicon thin film transistors. At $400^{\circ}C$, the thickness of oxide was limited to 5nm and the oxide contained Si≡N and ≡Si-N-Si≡ bonds. The nitrogen incorporation improved breakdown field to 10MV/cm and reduced the interface charge density to $1.52$\times$10^{11}$ $cm^2$ with negative charge. The $N_2$O plasma gate oxide enhanced the field effect mobility of polycrystalline thin film transistor, compared to $O_2$ plasma gate oxide, due to the reduced interface charge at the $Si/SiO_2$ interface and also due to the reduced trap density at Si grain boundaries by nitrogen passivation.

Lifetime Enhancement of Aerospace Components Using a Dual Nitrogen Plasma Immersion ion Implantation Process

  • Honghui Tong;Qinchuan Chen;Shen, Li-Lu;Yanfeng Huo;Ke Wang;Tanmin Feng;Lilan Mu;Jun Zha;Paul K. Chu
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.62-66
    • /
    • 2002
  • Hydraulic pumps are used to control the landing wheels of aircrafts, and their proper operation is vital to plane safety It is well hewn that adhesive wear failure is a major cause of pump failure. A dual nitrogen plasma immersion ion implantation process calling for the implantation of nitrogen at two different energies and doses has been developed to enhance the surface properties of the disks in the pumps. The procedures meet the strict temperature requirement of <200$^{\circ}C$, and after the treatment, the working lifetime of the pumps increases by more than a factor of two. This experimental protocol has been adopted by the hydraulic pump factory as a standard manufacturing procedure.

  • PDF

도축 폐혈액 단백질을 이용한 유산균체의 생산

  • 현창기;신현길
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.218-223
    • /
    • 1997
  • For the utilization of animal blood produced in slaughter for the cultivation of lactic acid bacteria, the nitrogen sources in a complex(MRS) medium were replaced by blood plasma proteins. Focusing the purpose on the industrial production of a probiotics, the hydrolytic activities of three industrially applicable proteases were compared for the effective digestion of the proteins, and Alcalase(the product of Novo Nordisk) was selected with comparatively high activity. The growth of Streptococcus thermophilus KCCM12020 was best among the four strains of lactic acid bacteria tested. With Alcalase-digested proteins in the medium, the growth rates and the final cell concentrations were higher than those with non-digested proteins. The cell mass produced in the medium containing blood proteins as nitrogen sources, $2.5{\times}10^9$ CFU/ml, was significantly high and about 70% of that in MRS medium, showing a great possibility for the utilization of animal blood proteins as economic nitrogen sources in the production of cell mass of lactic acid bacteria.

  • PDF

Effect of nitrogen doping on properties of plasma polymerized poly (ethylene glycol) film

  • Javid, Amjed;Long, Wen;Lee, Joon S.;Kim, Jay B.;Sahu, B.B.;Jin, Su B.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.286-288
    • /
    • 2014
  • This study deals with the catalyst free radio frequency plasma assisted polymerization of ethylene glycol using nitrogen as reactive gas to modify the surface chemistry and morphology. The deposited film was characterized through various analysis techniques i.e. surface profilometry, Forier transform infrared spectroscopy, water contact angle and UV-visible spectroscopy to analyze film thickness, chemical structure, surface energy and optical properties respectively. The surface topography was analyzed by Atomic force microscopy. It was observed that the ethylene oxide behaviour and optical transmittance of the film were reduced with the introduction of nitrogen gas due to higher fragmentation of monomer. However the hydrophilic behavior of the film improved due to formation of new water loving functional groups suitable for biomedical applications.

  • PDF

OMVPE and Plasma-Assisted Doping of ZnSe with Dimethlzinc:triethylamine Adduct Source

  • Huh, Jeung-Soo;Lim, Jeong-Ok
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.55-60
    • /
    • 1996
  • The growth and microwave plasma assisted nitrogen doping of ZnSe by low pressure organometallic vapor phase epitaxy(OMVPE) has been investigated in a vertical downflow reactor equipped with a laser interferometer for in-situ growth rate measurements. Particular emphasis is placed on understanding growth characteristics of $H_{2}Se$ and the new adduct source dimethylzinc:triethyllamine($DMZn:NEt_{3}$) as compared with those obtained with $H_{2}Se$ and DMZn. At lower temperatures ($<300^{\circ}C$) and pressures(<30Torr), growth rates are higher with the adduct source and the surface morphology is improved relative to films synthesized with DMZn. Hall measurements and photoluminescence spectra of the grown films demonstrate that DMZn and $DMZn:NEt_{3}$ produce material with comparable electronic and optical properties. Microwave plasma decomposition of ammonia is investigated as a possible approach to increasing nitrogen incorporation in ZnSe and photoluminescence spectra are compared to those realized with conventional ammonia doping.

  • PDF

Properties of Spin-On-Glass Siloxane Thin Films Fluorine-doped by CF$_4$ Plasma (CF$_4$ 플라즈마 처리로 불소를 첨가한 실록산 Spin-On-Glass 박막의 특성)

  • 김현중;김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2001
  • Siloxane thin films were fabricated on a silicon wafer by spin-coating using a siloxane solution made by the sol-gel process. Fluorine was doped using$ CF_4$ plasma treatment. The film was then annealed in-situ state in the nitrogen atmosphere. In order to examine the influence of annealing and fluorine doping on the siloxane thin film, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used and the dielectric constant was determined by the high-frequency capacitance-voltage method. Stable siloxane films could be obtained by in-situ annealing in a nitrogen atmosphere after $CF_4$ plasma treatment, and the dielectric value of the film was $\varepsilon$ 2.5.

  • PDF

Surface Properties of Plasma Nitrogen Ion Implanted Stainless Steel (플라즈마 질소 이온주입한 오스테나이트 스테인레스 강의 표면특성)

  • Kim, G.H.;Nikiforov, S.A.;Lee, H.S.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2253-2255
    • /
    • 1999
  • Plasma source ion implantation (PSII) is a non-line-of-sight technique for surface modification of materials which is effective for non-planar targets. Properties such as hardness, corrosion resistance, wear resistance and friction can be improved without affecting the bulk properties of the material. Type 304 austenitic stainless steel was treated by nitrogen plasma ion implantation at a target bias of -50kV. Surface properties, including microhardness and ion depth profile, were studied.

  • PDF

RF Plasma Nitriding of AISI 304 Stainless Steel

  • Kim, Sun-Kyu;Yoo, Jung-Sik;Matthew P. Fewell
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.53-57
    • /
    • 2004
  • Austenitic stainless steel AISI 304 was nitrided in a low-pressure RF plasma using pure nitrogen. With a treatment of time of 4.0h at $400^{\circ}C$, the nitrogen-rich layer on the sample was $3\mu\textrm{m}$thick and had a hardness of approximately 4.4 times higher than that of untreated material. XRD data showed that as the process temperature rose from 350∼$450^{\circ}C$, the expanded austenite peaks became more prominent while the austenite peaks became weaker. Expanded austenite was transformed to ferrite and CrN at the treatment of$ 500^{\circ}C$. Langmuir probe measurements showed that electron density decreased above $450^{\circ}C$.