• 제목/요약/키워드: nitrogen ion implantation

검색결과 68건 처리시간 0.024초

질소이온주입에 따른 생체안전성 티타늄 임플란트의 마모특성 (Wear Properties of Biocompatible Ti Implant due to Nitrogen Ion Implantation)

  • 최종운;손선희;변응선;정용수
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.126-134
    • /
    • 1999
  • In this study, plasma source ion implantation was used to improve the wear properties of biocompatible titanium implant. In order to observe the effect of ion energy and dose on wear property of titanium implant, pin-on-disk type wear tests in Hank's solution were carried out. The friction coefficient of ion implanted specimens were increased from 0.47 to 0.65 under high energy and ion dose conditions. As increasing ion energy and ion dose, the amount of wear was reduced.

  • PDF

고에너지 질소 이온 주입된 CdS 박막 특성에 관한 연구 (A Study on the Characteristics of High Energy Nitrogen ion Implanted CdS Thin Films)

  • 이재형;홍석주;양계준
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.712-718
    • /
    • 2003
  • 진공 증착한 CdS 박막의 질소 이온 주입 효과를 X-선 회절 검사, 광 투과율, 라만 산란 특성을 통하여 조사하였다. 질소 이온 주입하지 않은 CdS 박막은 (0 0 2)면으로의 우선 방위를 가지고 성장하였다. 질소 이온 주입한 시편의 경우 metallic Cd가 형성됨을 XRD 분석 결과 알 수 있었다. 가시광 영역에서의 광투과율은 질소 이온 주입 양이 많아짐에 따라 크게 감소하였다. 또한 질소 이온 주입 양에 따라 CdS 박막의 흡수 계수는 지수 함수적으로 증가하였고, 밴드 갭은 감소하였다 CdS 박막의 라만 peak 위치는 질소 이온 주입 양에 관계없이 299 cm-1로 거의 일정하지만, peak의 FWHM은 이온 주입 양이 증가함에 따라 커졌고, peak 면적은 감소하였다.

Lifetime Enhancement of Aerospace Components Using a Dual Nitrogen Plasma Immersion ion Implantation Process

  • Honghui Tong;Qinchuan Chen;Shen, Li-Lu;Yanfeng Huo;Ke Wang;Tanmin Feng;Lilan Mu;Jun Zha;Paul K. Chu
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제6권2호
    • /
    • pp.62-66
    • /
    • 2002
  • Hydraulic pumps are used to control the landing wheels of aircrafts, and their proper operation is vital to plane safety It is well hewn that adhesive wear failure is a major cause of pump failure. A dual nitrogen plasma immersion ion implantation process calling for the implantation of nitrogen at two different energies and doses has been developed to enhance the surface properties of the disks in the pumps. The procedures meet the strict temperature requirement of <200$^{\circ}C$, and after the treatment, the working lifetime of the pumps increases by more than a factor of two. This experimental protocol has been adopted by the hydraulic pump factory as a standard manufacturing procedure.

  • PDF

질소이온의 주입이 생체안전성 티타늄임플란트의 내식성에 미치는 영향 (Effect of Nitrogen Ion Implantation on Corrosion Resistance of Biocompatible Ti Implant)

  • 최종운;손선희
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.134-139
    • /
    • 1999
  • In this study, PSII(plasma source ion implantation) was used to improve the biocompatibility of bone-anchored Ti implant. According to potentiodynamic anodic polarization test in deaerated Hank's solution, open circuit potential of ion implanted specimens were increased compare to that of unimplanted specimen ; besides, passive current density and critical anodic current density of ion implanted specimens were lower than unimplanted specimen.

  • PDF

플라즈마 이온주입 방법에 의한 질화철 제조 및 자기적 성질 (Magnetic Properties and Production of Fe-N Phases by Plasma Source Ion Implantation)

  • 김정기;김곤호;김용현;한승희;김철성
    • 한국자기학회지
    • /
    • 제8권1호
    • /
    • pp.6-12
    • /
    • 1998
  • 플라즈마 이온주입 장치를 이용하여 $\alpha$-Fe foil에 질소 이온을 주입하여 질화철 결정상을 만들었으며, 이때 질소 이온 주입시간을 15분(FEN15)과 30분 (Fe30)으로 처리되었다. 오제 전자 분광법(Auger electron spectroscopy : AES)을 이용하여 측정한 주입된 질소 이온의 깊이는 사편 FeN15와 FeN30에서 각각 12000$\AA$과 40000$\AA$으로 나타난다. 진동 시편 자력계(vibrating sample magnetometer : VSM)측정결과 as-implanted 각각의 시편은 포화자화 값이 순수한 $\alpha$-Fe foil 보다 증가되었으며, 이는 $\alpha$'-Fe8N 또는 $\alpha$'-Fe16N2의 결정구조가 그원인으로 판단된다. 따라서 본 연구는 플라즈마 이온주입 방법으로 제작된 질화철에서 부분적인 $\alpha$'또는 $\alpha$'의 졀정구조 형성 가능성을 확인할 수 있었다.

  • PDF

Glass strengthening and coloring using PIIID technology

  • Han, Seung-Hee;An, Se-Hoon;Lee, Geun-Hyuk;Jang, Seong-Woo;Whang, Se-Hoon;Yoon, Jung-Hyeon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.178-178
    • /
    • 2016
  • Every display is equipped with a cover glass to protect the underneath displaying devices from mechanical and environmental impact during its use. The strengthened glass such as Gorilla glass.$^{TM}$ has been exclusively adopted as a cover glass in many displays. Conventionally, the strengthened glass has been manufactured via ion-exchange process in wet salt bath at high temperature of around $500^{\circ}C$ for hours of treatment time. During ion-exchange process, Na ions with smaller diameter are substituted with larger-diameter K ions, resulting in high compressive stress in near-surface region and making the treated glass very resistant to scratch or impact during its use. In this study, PIIID (plasma immersion ion implantation and deposition) technique was used to implant metal ions into the glass surface for strengthening. In addition, due to the plasmonic effect of the implanted metal ions, the metal-ion implanted glass samples got colored. To implant metal ions, plasma immersion ion implantation technique combined with HiPIMS method was adopted. The HiPIMS pulse voltage of up to 1.4 kV was applied to the 3" magnetron sputtering targets (Cu, Ag, Au, Al). At the same time, the sample stage with glass samples was synchronously pulse-biased via -50 kV high voltage pulse modulator. The frequency and pulse width of 100 Hz and 15 usec, respectively, were used during metal ion implantation. In addition, nitrogen ions were implanted to study the strengthening effect of gas ion implantation. The mechanical and optical properties of implanted glass samples were investigated using micro-hardness tester and UV-Vis spectrometer. The implanted ion distribution and the chemical states along depth was studied with XPS (X-ray photo-electron spectroscopy). A cross-sectional TEM study was also conducted to investigate the nature of implanted metal ions. The ion-implanted glass samples showed increased hardness of ~1.5 times at short implantation times. However, with increasing the implantation time, the surface hardness was decreased due to the accumulation of implantation damage.

  • PDF

중수소 이온 주입에 의한 MOS 커패시터의 게이트 산화막 절연 특성 개선 (Improvement of Gate Dielectric Characteristics in MOS Capacitor by Deuterium-ion Implantation Process)

  • 서영호;도승우;이용현;이재성
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.609-615
    • /
    • 2011
  • This paper is studied for the improvement of the characteristics of gate oxide with 3-nm-thick gate oxide by deuterium ion implantation methode. Deuterium ions were implanted to account for the topography of the overlaying layers and placing the D peak at the top of gate oxide. A short anneal at forming gas to nitrogen was performed to remove the damage of D-implantation. We simulated the deuterium ion implantation to find the optimum condition by SRIM (stopping and range of ions in matter) tool. We got the optimum condition by the results of simulation. We compare the electrical characteristics of the optimum condition with others terms. We also analyzed the electrical characteristics to change the annealing conditions after deuterium ion implantation. The results of the analysis, the breakdown time of the gate oxide was prolonged in the optimum condition. And a variety of annealing, we realized the dielectric property that annealing is good at longer time. However, the high temperature is bad because of thermal stress.

CdS 박막의 구조적 및 광학적 물성에 미치는 아르곤 및 질소 이온 주입 효과 (Argon and Nitrogen Implantation Effects on the Structural and Optical Properties of Vacuum Evaporated Cadmium Sulphide Thin Films)

  • 이준신;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제15권6호
    • /
    • pp.471-478
    • /
    • 2002
  • Vacuum evaporated cadmium sulphide (CdS) thin films were implanted with $Ar^+$ and $N^+$ for different doses. The properties of the ion implanted CdS thin films have been analysed using XRD, optical transmittance spectra, and Raman scattering studies. Formation of Cd metallic clusters were observed in ion implanted films. The band gap of $Ar^+$ doped films decreased from 2.385 eV of the undoped film to 2.28 eV for the maximum doping. In the case of $N^+$ doped film the band gap decreased from 2.385 to 2.301 eV, whereas the absorption coefficient values increased with the increase of implantation dose. On implantation of both types of ions, the Raman peak position appeared at $299\textrm{cm}^{-1}$ and the FWHM changed with the ion dose.

플라즈마 이온주입에 의해 표면 개질한 초경공구의 가공특성 (Cutting Characteristics of Plasma Source Son Implanted Tungsten Carbide Tool)

  • 강성기;왕덕현;김원일
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.33-40
    • /
    • 2010
  • In this research, the effects for surface Improvement of plasma ion implanted carbide endmill tools were observed by measuring cutting forces and tools wear affecting surface roughness in high speed cutting. From the 2nd ion mass analysis, the oxidation layer was found to be built up by sputtering. The residual gas contamination of oxygen was found to be contained impurities in nitrogen gas. The plasma implanted ion was found to be spreaded, especially the nitrogen was implanted up to 150nm depth as impressed voltage and ion implanting time. It is analyzed as bring surface improvement by spreading deeply forming oxidation on surface. The factors in Analysis of Variance(ANOVA) about mutuality cause reference of cutting force. The cutting force Fx is affected by the interaction of spindle rpm and federate, the cutting force Fy is influenced by spindle rpm and time injected ion, and cutting force Fz is affected by the interaction of impressed voltage and feedrate. Also, it was found that the cutting forces of implanted tools become lower and the surface roughness is improved by the effect of nitrogen according to the implantation.

플라즈마 질소 이온주입한 오스테나이트 스테인레스 강의 표면특성 (Surface Properties of Plasma Nitrogen Ion Implanted Stainless Steel)

  • 김광훈;;이홍식;임근희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2253-2255
    • /
    • 1999
  • Plasma source ion implantation (PSII) is a non-line-of-sight technique for surface modification of materials which is effective for non-planar targets. Properties such as hardness, corrosion resistance, wear resistance and friction can be improved without affecting the bulk properties of the material. Type 304 austenitic stainless steel was treated by nitrogen plasma ion implantation at a target bias of -50kV. Surface properties, including microhardness and ion depth profile, were studied.

  • PDF