• Title/Summary/Keyword: nitrogen implantation

Search Result 87, Processing Time 0.023 seconds

Influence of Phase Evolution and Texture on the Corrosion Resistance of Nitrogen Ion Implanted STS 316L Stainless Steel (질소 이온이 주입된 STS 316L 스테인리스 강에서의 상변화와 집합조직이 내식성에 미치는 영향)

  • Jun, Shinhee;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.293-299
    • /
    • 2015
  • In this study, nitrogen ions were implanted into STS 316L austenitic stainless steel by plasma immersion ion implantation (PIII) to improve the corrosion resistance. The implantation of nitrogen ions was performed with bias voltages of -5, -10, -15, and -20 kV. The implantation time was 240 min and the implantation temperature was kept at room temperature. With nitrogen implantation, the corrosion resistance of 316 L improved in comparison with that of the bare steel. The effects of nitrogen ion implantation on the electrochemical corrosion behavior of the specimen were investigated by the potentiodynamic polarization test, which was conducted in a 0.5 M $H_2SO_4$ solution at $70^{\circ}C$. The phase evolution and texture caused by the nitrogen ion implantation were analyzed by an X-ray diffractometer. It was demonstrated that the samples implanted at lower bias voltages, i.e., 5 kV and 10 kV, showed an expanded austenite phase, ${\gamma}_N$, and strong (111) texture morphology. Those samples exhibited a better corrosion resistance.

Improvement of wear resistance of Zircaloy-4 by nitrogen implantation

  • Han, Jeon G.;Lee, jae S.;Kim, Hyung J.;Kim, W.;Choi, B.Y.;Tang, Guoy
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.06a
    • /
    • pp.151-151
    • /
    • 1995
  • Nitrogen implantation process has been applied for improvement of wear resistance of Z Zircaloy-4 fuel cladding materials. Nitrogen was implanted at 120 ke V to a total do range of 1xHP ions/cm2 to 8xlO17 ions/cm2 at various temperatures of 298"C to 676"C. The m microstructure changes by nitrogen implantation were analyzed by using TEM, XRD 뻐d A AES, cmd then wear behavior was evaluated by ball-on-disc wear testings at various loads a and sliding velocity under unlubricated condition. Nitrogen implantation produced ZrNx nitride above 4.37x1017 ions!cm2 as well as heavy d dislocations, which enhanced microhardness of the implanted surface of up to 900 Hk from 2 200 Hk of unimplanted substrate. Hardness was also found to be increased with increasing i implantation temperature and enhanced up to OOOHk at 620 "C. the wear resistance was g greatly improved with increasing total ion do않 as well as implantation temperature. The effective enhancement of wear resistance at high dose and tem야ratures is believed d due to significant hardening associated with high degree of precipitation of Zr nitrides and g generation of prismatic dislocation I$\infty$ps.infty$ps.

  • PDF

Improvement of wear resistance of Zircaloy-4 by nitrogen implantation

  • Han, Jeon G.;Lee, Jae s. J;Kim, Hyung J.;Keun Song;Park, Byung H.;Guoy Tang;Keun Song
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.100-105
    • /
    • 1995
  • Nitrogen implantation process has been applied for improvement of wear resistance of Zircaloy-4 fuel cladding materials. Nitrogen was implanted at 120keV to a total dose range of $1\times 10^{17}$ions/$\textrm{cm}^2$ to $1\times 10^{18}$ions/$\textrm{cm}^2$ at various temperatures between $270^{\circ}C$ and $671^{\circ}C$. The microstructure changes by nitrogen implantation were analyzed by XRD and AES and wear behavior was evaluated by performing ball-on-disc type wear testing at various loads and sliding velocities under unlubricated condition. Nitrogen implantation produced ZrNx nitride above $3\times 10^{17}$ions/$\textrm{cm}^2$ as well as heavy dislocations, which resluted in an increase in microhardness of the implanted surface of up to 1400 $H_k$ from 200 $H_k$ of unimplanted substrate. Hardness was also found to be increased with increasing implantation temperature up to 1760 $H_k$ at $620^{\circ}C$. The wear resistance was greatly improved as total ion dose and implantation temperature increased. The effective enhancement of wear resistance at high dose and temperature is believed to be due to the significant hardening associated with high degree of precipitation of Zr nitrides and generation of prismatic dislocation loops.

  • PDF

The Formation of Nitride and Enhancement of Mechanical Properties of Al Alloy by Nitrogen Implantation (Al합금에서 질소이온주입에 의한 질화물 형성과 기계적 특성 향상)

  • Jeong, Jae-Pil;Lee, Jae-Sang;Kim, Kye-Ryung;Choi, Byung-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.235-239
    • /
    • 2006
  • The aluminum nitride(AlN) layer on Al7075 substrate has been formed through nitrogen ion implantation process. The implantation process was performed under the conditions : 100 keV energy, total ion dose up to $2{\times}10^{18}\;ions/cm^2$. XRD analysis showed that aluminum nitride layers were formed by nitrogen implantation. The formation of Aluminum nitride enhanced surface hardness up to 265HK(0.02 N) from 150HK(0.02 N) for the unimplanted specimen. Micro-Knoop hardness test showed that wear resistance was improved about 2 times for nitrogen implanted specimens above $5\;{\times}\;10^{17}\;ions/cm^2$. The friction coefficient was measured by Ball-on-disc type wear tester and was decreased to 1/3 with increasing total nitrogen ion dose up to $1\;{\times}\;10^{18}ions/cm^2$. The enhancement of mechanical properties was observed to be closely associated with AlN formation. AES analysis showed that the maximum concentration of nitrogen increased as ion dose increased until $5\;{\times}\;10^{17}\;ions/cm^2$.

Surface Modification of Aluminum by Nitrogen ion Implantation (질소이온주입에 의한 알루미늄의 표면개질특성)

  • Kang Hyuk Jin;Ahn Sung Hoon;Lee Jae-Sang;Lee Jae Hyung;Kim Kyong Gun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.124-130
    • /
    • 2005
  • The research on surface modification technology has been advanced to improve the properties of engineering materials. ion implantation is a novel surface modification technology to enhance the mechanical, chemical and electrical properties of substrate's surface using accelerated ions. In this research, nitrogen ions were implanted into aluminum substrates which would be used for mold of rubber materials. The composition of nitrogen ion implanted aluminum alloy and nitrogen ion distribution profile were analyzed by Auger Electron Spectroscopy (AES). To analyze the modified surface, properties such as hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimens was higher than that of untreated specimens. Friction coefficient was reduced, and wear resistance was improved. From the experimental results, it can be expected that ion implantation of nitrogen enhances the surface properties of aluminum mold.

Effects of Nitrogen Ion Implantation on the Surface Properties of 316L Stainless Steel as Bipolar Plate for PEMFC (고분자전해질 연료전지 분리판용 316L 스테인리스강의 표면특성에 미치는 질소 이온주입 효과)

  • Kim, Min Uk;Kim, Do-Hyang;Han, Seung Hee;Kim, Yu-Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.722-727
    • /
    • 2009
  • The bipolar plates are not only the major part of the polymer electrolyte membrane fuel cell (PEMFC) stack in weight and volume, but also a significant contributor to the stack costs. Stainless steels are considered to be good candidates for bipolar plate materials of the PEMFC due to their low cost, high strength and easy machining, as well as corrosion resistance. In this paper, 316L stainless steel with and without nitrogen ion implantation were tested in simulated PEMFC environments for application as bipolar plates. The results showed that the nitride formed by nitrogen ion implantation contributed the decrease of the interfacial contact resistance without degradation of corrosion property. The combination of excellent properties indicated that nitrogen ion implanted stainless steel could be potential candidate materials as bipolar plates in PEMFC. Current efforts have focused on optimizing the condition of ion implantation.

Surface Modification of Aluminum by Nitrogen-Ion Implantation

  • Kang Hyuk-Jin;Ahn Sung-Hoon;Lee Jae-Sang;Lee Jae-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2006
  • The research on surface modification technology has been advanced to improve the properties of engineering materials. Ion implantation is a novel surface modification technology that enhances the mechanical, chemical and electrical properties of substrate's surface using accelerated ions. In this research, nitrogen ions were implanted into AC7A aluminum substrates which would be used as molds for rubber molding. The composition of nitrogenion implanted aluminum and distribution of nitrogen ions were analyzed by Auger Electron Spectroscopy (AES). To analyze the modified surface, properties such as hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimen was higher than that of untreated specimen. Friction coefficient was reduced, and wear resistance was improved. From the experimental results, it can be expected that implantation of nitrogen ions enhances the mechanical properties of aluminum mold.

A Study on Effect of Nitrogen Ion Implantation on Improvement of Surface Properties of Tool Steel (금형공구강의 표면성질 향상에 미치는 질소이온주입의 효과에 관한 연구)

  • Kim, Hwa-Jeong;Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.3-9
    • /
    • 2008
  • The ion implantation technology is generally used in order to improve surface mechanical properties, especially tribological properties, of engineering metals. In this study, experimental works were carried out to investigate the surface properties, such as hardness, wear quantity, wear rate and friction force, of a nitrogen ion implanted tool steel STD11 under dry condition. Specimens for the wear test were made to investigate the influences of the initial ion implantation temperature and the total ion radiation. Wear properties, such as the wear quantity and the wear rate, of the nitrogen ion implanted tool steel were considerably improved, especially under the low sliding speed and the low applied load.

  • PDF

Surface modification of Aluminum for mold by nitrogen ion implantation (질소이온주입에 의한 금형용 알루미늄의 표면개질특성)

  • 강혁진;안성훈;김경동;이재상;이재형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.254-259
    • /
    • 2004
  • The research on surface modification technology has been advanced to change the properties of engineering material. Ion implantation is a novel surface modification technology to enhance the mechanical, chemical and electronic properties of mechanical parts. In this research, nitrogen ions are implanted into aluminum for mold to improve endurance and life span. To analyze modification of surface properties, micro hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimens was higher than untreated specimen and friction coefficient was also improved. In this experiment, it can be expected that nitrogen ion implantation can contribute to enhance the mechanical properties of material and ion implantation technology may also be applied to other materials.

  • PDF

Enhancement of Life Time for PCB (Printed Circuit Board) Drill Bit by Nitrogen Ion Implantation

  • Lee, Chan-Young;Lee, Jae-Sang;Kim, Bum-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.206-208
    • /
    • 2008
  • Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. In recent years, PCB drills tend to be more minimized increasingly as the electronics components have been more highly accumulated and minimized. Therefore nitrogen ion implantation was performed onto PCB drill (0.15 & 0.3 mm in diameter), in order to investigate mechanical properties of WC-Co cermets surface through Nano-indentation tests. PCB drill was implanted at energy of 70 keV, 90 keV, 120 keV and with the dose range of $1{\times}10^{17}$ and $5{\times}10^{17}\;ions/cm^{2}$. After ion implantation, WC-Co PCB drill bits was tested in actual operating situation to apply cutting tools industry and is concluded that the life time of nitrogen ion implanted PCB drills is one and a half times longer than the unimplanted.