• Title/Summary/Keyword: nitrogen fixation activity

Search Result 97, Processing Time 0.023 seconds

Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture (친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용)

  • Gadagi, Ravi;Park, Myoung-Su;Lee, Hyoung-Seok;Seshadri, Sundaram;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.290-303
    • /
    • 2003
  • Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.

Associated Nitrogen Fixation in the Rhizosphere of Rice in Saline and Reclaimed Saline Paddy Soil -1. Enumeration of aerobic heterotrophic bacteria associated in histosphere of grasses and rice (간척지토양(干拓地土壤)의 수도근권(水稻根圈)에서 협생질소고정(協生窒素固定)에 관(關)한 연구(硏究) -제(第)1보(報) 수도(水稻) 및 자연생잡초(自然生雜草) 근조직내(根組織內) 협생질소고정균(協生窒素固定菌)의 분리동정(分離同定))

  • Lee, Sang Kyu;Suh, Jang Sun;Ko, Jae Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 1987
  • The aerobic heterotrophic bacteria in the histosphere associated with grasses (Gramineae, Caryphyllaceae, Crucifereae) and rice cultivars in saline and reclaimed saline paddy soils were varied with species and rice cultivars. The fraction of aerobic heterotrophic $N_2$-fixing bacteria to the total aerobic heterotrophic bacteria were averaged to eighteen percent in the histosphere of grasses and rice. Acetylene reducing activity of these bacteria were ranged from 1 to 24 n mole/tube/hr. Most of the bacteria strains were predominated of hydrogen utilizing bacteria. The majority of these bacteria were closed to Pseudomonas, Azospirillum, Klebsiella and Agrobacter.

  • PDF

Effects of Nitrogen and Phosphorus Fertilization on Ectomycorrhiza Development, N-Fixation and Growth of Red Alder Seedlings (질소(窒素)와 인산(燐酸) 시비(施肥)가 루브라 오리나무(Alnus rubra Bong.) 묘목(苗木)의 외생균근발달(外生菌根發達)과 질소고정(窒素固定) 및 생장(生長)에 미치는 영향(影響))

  • Koo, Chang-Duck;Molina, Randolph J.;Miller, Steven L.;Li, Ching Y.
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.96-106
    • /
    • 1996
  • Red alder(Alnus rubra Bong.) seedlings inoculated with Frankia only or both Frankia and spores of Alpova diplophloeus(Zeller & Dodge) Trappe & Smith were grown in a greenhouse for ten weeks. The ten-week-old seedlings were fertilized with six nitrogen(N) and phosphorus(P) fertility regimes (no fertilization, 10mM $NH_4NO_3$, 50mM $NH_4NO_3$, 5mM $KH_2PO_4$, 10mM $NH_4NO_3+5mM$ $KH_2PO_4$, and 50mM $NH_4NO_3+5mM$ $KH_2PO_4$) three times a week for ten weeks. The higher N-fertilization significantly increased mycorrhiza formation by greenhouse contaminant mycorrhizal fungi, but decreased N-fixation and P concentration in nodule tissues. P-fertilization significantly increased nodule and shoot dry weight, and P concentration in plant tissues. When N was highly fertilized, however, the P-fertilization effect disappeared in nodule P concentration but doubled in leaf P concentration. A. diplophloeus inoculation significantly increased diameter growth and $CO_2$ exchange rate, but decreased leaf dry weight. Our results suggest that the higher N- or P-fertilization affect nitrogenase activity and mycorrhizal development but the effects are changed by their interactions.

  • PDF

Functional Analysis of Bacillus subtilis Isolates and Biological Control of Red Pepper Powdery Mildew Using Bacillus subtilis R2-1 (Bacillus subtilis 균주의 기능성 분석 및 이를 활용한 고추 흰가루병 방제)

  • Kim, Yong-Ki;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Choi, Eun-Jung;Lee, Min-Ho;Park, Jong-Ho;Han, Eun-Jung;An, Nan-Hee;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.201-209
    • /
    • 2012
  • The multi-function of 18 Bacillus subtilis isolates collected from agricultural extension centers of local government and National Academy of Agricultural Science was investigated by measuring their antifungal activities against five plant pathogens, such as Rhizoctonia solani, Colletotrichum acutatum, Fusarium oxysporum, Magnaporthe oryzae and Phytophthora capsici, phosphorus solubilization ability, production of indole acetic acid (IAA) and siderophore, and nitrogen fixation. The B. subtilis isolates showed antifungal activity against several plant pathogens and nitrogen fixation activity, and produced siderophore and IAA. They could control pepper powdery mildew (Leveillula taurica), but there was no difference in control efficacy among the B. subtilis isolates. In fields, the control efficacy of B. subtilis R2-1 ($10^8$ cells/ml) was compared with two microbial fungicides, Q-pect and Topsid. In 2009, the control efficacy of B. subtilis R2-1 (37.7%) was lower than that of Topsid (47.6%), but higher than that of Q-pect (25.7%). In 2010, the control efficacy of B. subtilis R2-1 (83.3%) was higher than that of Topsid (67.9%). In order to elucidate mode of action of B. subtilis R2-1 for controlling pepper powdery mildew, spore germination rates of pepper powdery mildew pathogen collected on treated leaves was investigated when suspensions of B. subtilis R2-1 and two microbial fungicides (Q-pect and Topsid) were foliar-sprayed. They highly suppressed spore germination of the pathogen with inhibition values of 84.2% for B. subtilis R2-1, 97.9% for Q-pect and 94.7% for Topsid. Further study on the mass-culturing method and formulation is needed for development of a microbial fungicide.

Waterlogging Effects on Nitrogen Accumulation and $N_2$ Fixation of Supernodulating Soybean Mutants

  • Youn, Jong-Tag;Van, Kyu-Jung;Lee, Jae-Eun;Kim, Wook-Han;Yun, Hong-Tae;Kwon, Young-Up;Ryu, Yong-Hwan;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.111-118
    • /
    • 2008
  • Soybean is sensitive to waterlogging stress, leading to reduce their growth and yield significantly. The objective of this study was to characterize the relative sensitivities of biomass accumulation and specific nodule activity under waterlogging stress between supernoduating mutants, 'SS2-2' and 'Sakukei 4' and their wild-type soybeans, 'Sinpaldalkong 2' and 'Enrei', respectively. Flooding treatment was performed to soybean plants grown in a pot by waterlogging for 15 days from the beginning bloom(R1) stage under natural light. The nodule number and weight were considerably decreased by waterlogging stress. The bleeding sap rate of waterlogging soybean plants was decreased by 78-80% in supernodulating mutants and 65-74% in their wild types compared to control plants. The relative ureide-N content was also decreased by waterlogging and the reduction was high in supernodulating mutants. This may cause the massive reduction of shoot and root dry weight and leaf area in waterlogged soybean plants. There was a varietal difference in response to the waterlogging stress. During the waterlogging, supernodulating mutants maintained higher spad value than their wild types. Particularly, the difference between soybean varieties was clear in low rank leaves from the top. Also, supernodulating mutants showed a weak waterlogging tolerance than their wild types. Under waterlogging conditions, massive nodules were considerably destroyed and specific nodule activity after waterlogging may not be recovered when compared to their wild-type soybeans. Supernodulating mutants showed lower seed yield than their wild types in waterlogging conditions.

  • PDF

Effect of Fertilizer N Application and Bradyrhizobium sp. (Vigna) Inoculation on Symbiotic N2 Fixation of Peanut at Newly Reclaimed Soil (신개간지(新開墾地)에서 질소시비(窒素施肥)와 근류균(根瘤菌) 접종(接種)이 땅콩의 질소고정(窒素固定)에 미치는 영향(影響))

  • Lee, Sang-Bok;Cho, Youn-Hee;Kim, Moo-Ki;Park, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.3
    • /
    • pp.220-226
    • /
    • 1990
  • This experiment was carried out to study the effects of Bradyrhizobium moculation and fertilizer N application on symbiotc $N_2$ fixation of peanut (Arachis hypogaea L. cv. Younghotangkong) at newly reclaimed soil. Treatments consisting of B. sp. (Vigna) HCR-3 and HCR-46 with control and five levels of nitrogen (0, 4, 8, 16, 32kg/10a) were arranged with split design of four repetitions. The results obtained were as follows. The number of viable Bradyrhizobium in rhizosphere was decreased to 20 days after sowing and thereafter it was remarkably increased, until full ripe stage of pods, decreased as fertilizern rates increased. Nodulation and nitrogenase activity were reduced with increasing levels of fertilizer, whereas top dry matter and nitrogen accumulation where increased. Seed yield of Bradyhizobium inoculation under the fertilizer N zero level was similar to that N : 8kg/10a under uninoculation. It suggested that Bradyrhizobium inoculation could replace the effect of nitrogen application.

  • PDF

Introduction, Development, and Characterization of Supernodulating Soybean Mutant. 1. Mutagenesis of Soybean and Selection of Supernodulating Soybean Mutant (다량 뿌리혹 형성 콩 계통의 도입 개발 및 생육특성구명 1. 돌연변이유기에 의한 콩 초다뿌리혹형성 계통선발)

  • Lee, Hong-Suk;Chae, Young-Am;Park, Eui-Ho;Kim, Yong-Wook;Yun, Kwang-Il;Lee, Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.247-253
    • /
    • 1997
  • Development of soybean cultivars with great nodulation and high nitrogen fixation activity, derived mostly from mutagenesis, may decrease inputs of chemical fertilizer nitrogen into the soil-plant system. Soybean seeds (cv. Jangyupkong, Hwanggeumkong, and Geomjungkong 1) were treated with three different levels of EMS (ethyl methanesulfonate) concentration(30, 50, and 70mM). Increasing the doses of EMS resulted in decreased field emergence rate of seeds, whereas it did not increase M$_2$ mutation frequencies. This indicated that the most efficient concentration of EMS was 30mM for generating mutants. Extensive mutagenesis of Sinpaldalkong 2 with 30mM EMS was undertaken to isolate soybean mutants with greater nodulation. Approximately 8, 200 M$_2$ families were screened for greater nodulation on 5 mM nitrate after inoculation with Bradyrhizobium japonicum strain YCK213-KFCC-10728. Mutant SS-2 nodulated more than the wild type. Comparison of supernodulation between SS-2 and two nts mutants(nts 1007 and nts 1116) revealed that SS-2 showed the supernodulation character at an earlier growth stage than the two nts mutants. Further studies should be needed to characterize the difference in timing of nodulation between SS-2 and nts mutants.

  • PDF

Biological Control of Tomato and Red Pepper Powdery Mildew using Paenibacillus polymyxa CW (Paenibacillus polymyxa CW를 이용한 고추 및 토마토 흰가루병 방제)

  • Kim, Yong-Ki;Choi, Eun-Jung;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Jee, Hyeong-Jin;Park, Jong-Ho;Han, Eun-Jung;Jang, Bo-Kyung;Yun, Jong-Cheul
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • In order to improve practical utility of agro-microorganisms (AMs) which had been cultured and disseminated to promote plant growth and to control crop diseases, 51 isolates of AMs were collected from 18 agricultural extension centers in local government and screened for multi-functions such as antifungal activity, activities of phosphorus solubilization, IAA and siderophore production, nitrogen fixation, and hydrolytic enzyme activity. Finally we selected one isolate showing good antifungal activity and multi-functions related to plant growth and disease control. The selected isolate, Paenibacillus polymyxa CW, showed good inhibitory effect against plant pathogens, Pyricularia gresea, Colletotrichum acutatum, Fusarium oxysporum, Phomopsis sp., Aspergillus niger, Rhizoctonia solani and Phytophthora capsici. Suppressive effect of P. polymyxa CW against the used plant pathogens except for R. solani was much higher than that of P. polymyxa AC-1 storing in National Academy of Agricultural Science. We found P. polymyxa CW isolate showed good activity in siderophore and IAA formation, and nitrogen fixation. With P. polymyxa CW isolate, siderophore formation activity was similar to that of P. polymyxa AC-1, but IAA formation and nitrogen fixation activity was much higher than that of P. polymyxa AC-1. However neither P. polymyxa CW nor P. polymyxa AC-1 showed hydrolytic enzyme (chitinase, pectinase and cellulase) activity. The treatment of P. polymyxa CW with culture suspension of different cell density ($10^8$, $10^7$. $10^6$ cfu/ml) showed that the highest density reduced incidence of red pepper powdery mildew by 68.3% after 10 days of application. As application density of P. polymyxa CW was decreased, its control efficacy was proportionally decreased. In addition, when P. polymyxa CW was treated to control tomato powdery mildew at the same concentrations and their control effects were investigated after 7 days of inoculation, disease incidence was 0.03, 19.5, 45.7%, respectively, compared to 56.3% that of untreated check. Like red pepper powdery mildew, increase of application density of P. polymyxa CW resulted in increase of its control efficacy proportionally. P. polymyxa CW showed a density-dependent control efficacy against red pepper and tomato powdery mildews. Therefore we think that mode of action of the antagonist for suppressing two powdery mildew diseases might be antibiosis and density of more than $10^8cfu/ml$ was needed to control effectively the two diseases. On this basis, we think that P. polymyxa CW can be a promising control agent for suppressing powdery mildews of red pepper and tomato.

Associated Nitrogen Fixation in the Rhizosphere of Rice in Saline and Reclaimed Saline Paddy Soil -III. Inoculation of several associative N2-fixing bacteria on the rice spermospher axenic culture media (간척지토양(干拓地土壤)의 수도근권(水稻根圈)에서 협생질소고정(協生窒素固定)에 관(關)한 연구(硏究) -제(第)III보(報) 순수배양기내(純粹培養器內)에서 수도종자권(水稻種子圈)의 협생질소고정균(協生窒素固定菌) 접종효과(接種效果))

  • Lee, Sang-Kyu;Suh, Jang-Sun;Ko, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.269-274
    • /
    • 1987
  • A laboratory experiment was conducted to find out the effect of inoculation with plant growth of associative $N_2$-fixing bacteria on the combination of eight different rice seedling with seven different associative $N_2$-fixing bacteria in which were isolated and identified from grasses and rice in saline and reclaimed saline paddy soil. Those were examined in N-free axenic culture medium. The result of this experiment exemplified the contribution of associative $N_2$-fixing bacteria to their host plant were varied much by the combination of rice cultivars and bacterial strains. Acetylene reduction ($N_2$-fixation) activity seems to be more variable with respect to the combination of rice cultivars and bacterial strains. The relationship between acetylene reduction activity and rice performance such as dry matter weight, plant height, root length, and number of root were statistically insignificant. However, in comparision with the control, the dry matter yield of Annapuruna was increased by inoculation of all the seven bacteria strains. Among the seven rice cultivars, the average acetylene reducing activity was the highest in Annapuruna, and Shingwang, and the lowest in IR-8 inoculated with Pseudomonas sp H8. Among the seven bacterial strains the highest acetylene reducing activity was obtained by the combination of Shingwang with Pseudomonas sp H8.

  • PDF

Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil

  • Siddikee, M.A.;Chauhan, P.S.;Anandham, R.;Han, Gwang-Hyun;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1577-1584
    • /
    • 2010
  • In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate ($S_2O_3$) oxidation, the production of ammonia ($NH_3$), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated salt-stressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.