• Title/Summary/Keyword: nitrite ($NO_2{^-}$) accumulation

Search Result 36, Processing Time 0.024 seconds

Nitrite Accumulation of Anaerobic Treatment Effluent of Slurry-type Piggery Waste (슬러리상 돈사폐수의 혐기성 처리수의 아질산성 질소 축적)

  • Hwang, In-Su;Min, Kyung-Sok;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.711-719
    • /
    • 2006
  • The effluent from anaerobic digestion process of slurry-type piggery waste has a characteristic of very low C/N ratio. Because of high nitrogen content, it is necessary to evaluate nitrogen removal alternative rather than conventional nitrification-denitrification scheme. In this study, two parallel treatment schemes of SBR-like partial nitritation reactor coupled with anaerobic ammonium oxidation (ANAMMOX) reactor, and a nitritation reactor followed by nitrite denitrification process were evaluated with a slurry-type piggery waste. The feed to reactors adjusted with various $NH_4-N$ and organics concentration. The nitrite accumulation was successfully accomplished at the loading rate of about $1.0kgNH_4-N/m^3-day$. The $NO_2-N/NH_4-N$ ratio 1~2.6 in nitritated effluent that operated at HRT of 1 day indicated that SBR-like partial nitritation was applicable to ANAMMOX operation. Meanwhile, the nitrite accumulation of 87% was achieved at SBR operated with HRT of 3 days and $0.4mgO_2/L$ for denitritation. Experimental results further suggested that HRT (SRT) and free ammonia(FA) rather than DO are an effective control parameter for nitrite accumulation in piggery waste.

Feasible monitoring of the inhibitory effects of free NH3 on NO2- oxidation

  • Yoo, Byeong-Hak;Lee, Sang-hun
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.243-250
    • /
    • 2018
  • This study investigated nitrite ($NO_2{^-}$) accumulation due to FA (Free Ammonia: $NH_3$) inhibition in an anaerobic-aerobic-anoxic (AOA) process reactor to mainly treat wastewater containing 302-610 mg/L of $NH_3/NH_4{^+}-N$. Based on an experimental operation focusing on the nitrification, it was observed that $NO_2{^-}$ was accumulated in the aerobic nitrification zone as pH increased, due to inhibition of $NO_2{^-}$ conversion to $NO_3{^-}$ by FA. This result implied FA inhibition to NOB ($NO_2{^-}$-Oxidizing Bacteria) for converting $NO_2{^-}$ to $NO_3{^-}$. The objective of this study is to develop a feasible monitoring procedure for early detection of the FA inhibition toward $NO_2{^-}$ accumulation and poor nitrification. Thus, in order to rapidly assess FA concentrations, an $NH_3$ probe was utilized to measure $NH_3$ concentrations together with applying a simple model prediction using the measured $NH_4{^+}$ concentrations, the Henry's law constant of $NH_3$ and measured pH. The predictive model $NH_3$ levels were verified by a good correlation (89%) with the corresponding measured data, but the model prediction underestimated FA concentrations at less than 7.4 and a little overestimated at pH above 7.5. Interestingly, accumulated $NO_2{^-}$ levels were roughly correlated with FA levels that were observed at delayed time points. This reflects the detected FA levels can be good indicators of $NO_2{^-}$ levels with some delayed time. $NO_2{^-}$ accumulation started at measured FA concentrations of higher than approximately 3 mg/L and ceased below that FA level.

Effects of Environmental Factors on Nitrite Accumulation in a Strong Nitrogen Removal System (고농도 질소폐수 처리 공정에서 환경인자가 아질산염 축적에 미치는 영향)

  • Park, Noh-Back;Choi, Woo-Yung;Yoon, Ae-Hwa;Jun, Hang-Bae;Park, Sang-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.51-62
    • /
    • 2010
  • The high concentration of N in the wastewater from livestock farming generally renders the efficiency of the wastewater treatment. Therefore, removal of N in livestock wastewater is crucial for successful treatment. The current study was conducted to investigate the optimum conditions for partial nitrification under anaerobic condition following nitritation in TPAD-BNR(two-phase anaerobic digestion-biological nitrogen removal) operating system. Sequential operating test to stimulate partial nitrification in reactor showed that partial nitrification occurred at a ratio of 1.24 in $NO_2{^-}$-N:$NH_4{^+}$-N. With this result, a wide range of factors affecting stable nitritation were examined through regression analysis. In the livestock wastewater treatment procedure, the hydraulic retention time (HRT) and pH range for optimum nitrite accumulation in the reactor were 1-1.5 days and 7-8, respectively. It was appeared that accumulation of $NO_2{^-}$-N in the reactor is due to inhibition of the $NO_2{^-}$-N oxidizer by free ammonia (FA) while the effect of free nitrous acid was minimal. Nitrification was not influenced by DO concentration at a range of 2.0-3.0 mg/L and the difference in the growth rate between $NH_4{^+}$-N oxidizer and $NO_2{^-}$-N oxidizer was dependent on the temperature in the reactor.

Nitritation Characteristics Depending on Influent Nitrogen Concentration in a Biological Aerated Filter (Biological Aerated Filter에서 유입 질소농도에 따른 아질산화 특성)

  • Yoo, Ik-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The purpose of this study was to investigate the nitrification characteristics of biological aerated filter (BAF) packed with ceramic media, especially focusing on nitrite build-up during nitrification. When increasing the nitrogen load above $1.63kgNH_4{^+}-N/m^3{\cdot}d$, ammonium removal efficiency decreased to less than 60% and the nitrite ratio ($NO_2{^-}-N/NO_x-N$) of higher than 75% was achieved due to the inhibitory free ammonia (FA, $NH_3-N$) concentration and oxygen limitation. FA inhibition, however, is not recommended strategy to promote nitrite build-up since FA concentration in the reactor is coupled with decreased ammonium removal efficiency. Nitrite ratio in the effluent was also affected by aeration rate and influent ammonium concentration. Ammonium oxidation was enhanced at a higher aeration rate regardless of influent ammonium concentration but, the nitrite ratio was dependent on both aeration rate and influent ammonium concentration. While a higher nitrite ratio was obtained when BAFs were fed with $50mgNH_4{^+}-N/L$ of influent, the nitrite ratio significantly decreased for a greater influent concentration of $200-300mgNH_4{^+}-N/L$. Taken together, aeration rate, influent ammonium concentration and FA concentrations kept in the BAF were found to be critical variables for nitrite accumulation in the BAF system.

Nitrite Accumulation Characteristics According to Hydraulic Retention Time and Aeration Rate in a Biological Aerated Filter (생물여과 반응기에서 수리학적 체류시간 및 폭기량에 따른 아질산 축적 특성)

  • Yoon, Jong Moon;Kim, Dong Jin;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.200-206
    • /
    • 2006
  • In a biological aerated filter (BAF) packed with ceramic media (void fraction of BAF=0.32), nitrite accumulation was studied with the variation of hydraulic retention time (HRT) and superficial air velocity. Synthetic ammonium wastewater and petrochemical wastewater were fed at a constant load of $1.6kgNH_4^+-N/m^3{\cdot}d$. Ammonium removal rate was mainly affected by the superficial air velocity in BAF, but nitrite ratio($NO_2-N/NO_x-N$) in the effluent was dependent on both HRT and superficial air velocity. For a fixed HRT of 0.23 hr (corresponding to the empty bed contact time of 0.7 hr) ammonium removal rate was 73/90/92% and nitrite ratio was 0.92/0.82/0.48 at the superficial air velocity of 0.23/0.45/0.56 cm/s, respectively. When HRT is increased to 0.9 hr with superficial air velocity ranging from 0.34 to 0.45 cm/s, the ammonium removal rate was 89% on average. However nitrite ratio decreased significantly down to 0.13. When HRT was further increased to 1.4 hr, ammonium removal rate decreased, thereby resulting in the free ammonia ($NH_3-N$, FA) build-up and nitrite ratio gradually increased (>0.95). Although aeration rate and FA concentration at HRT of 0.23 hr were unfavorable for nitrite accumulation compared with those at HRT of 0.9 hr, nitrite ratio at HRT of 0.23 hr was higher. Taken together, HRT and nitrogen load were found to be critical, in addition to FA concentration and aeration condition, for nitrite accumulation in the BAF tested in the present study.

Phosphorus Removal by DPAOs (Denitrifying Phosphorus Accumulating Organisms) in Aerobic Condition (호기 조건에서 DPAOs (Denitrifying Phosphorus Accumulation Organisms)에 의한 인 제거)

  • Jeong, No-Sung;Park, Young-Seek;Kim, Dong-Seog
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • This study was carried out to get phosphorus uptake rate in aerobic condition with nitrate and nitrite. Nitrate and nitrite inhibited phosphorus accumulating organisms' (PAOs') luxury uptake in aerobic condition. Nitrite awfully decreased the phosphorus uptake rate in aerobic condition. At the influent of 10 mg ${NO_3}^-$-NL, the phosphorus uptake was decreased to 52% comparing that at no influent of nitrate. And at the influent of 10 mg ${NO_2}^-$-NL, the phosphorus uptake was decreased to 28% comparing that at no influent of nitrite. At the influent of 20 mg ${NO_3}^-$-NL, nitrite and nitrate were co-existed and the phosphorus uptake rate was decreased to 16% comparing that at no influent of nitrite and nitrate. Also, the denitrification was occurred by denitrifying glycogen accumulating organisms (DGAOs)/denitrifying phosphorus accumulating organisms (OPAOs) in spite of aerobic condition, and the phosphorus uptake rate was increased by the decrease of influent nitrate concentration at the aerobic condition. The inflection point in the phosphorus uptake rate was shown at the nitrite concentration of 1.5~2 mg/L.

Effect of Temperature and FA Concentration on the Conversion of Ammonium to Nitrite (온도와 FA 농도가 암모늄 이온의 아질산 전환에 미치는 영향)

  • Kim, Jung Hoon;Song, Young Chae;Park, Hung Suck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.427-432
    • /
    • 2006
  • The effects of free ammonia (FA) concentration and temperature on nitrite accumulation were studied. To estimate the most effective ammonium oxidation and nitrite build-up condition, nitrification tests were conducted in batch conditions at various FA concentrations, and at different ammonium concentration and temperature. The activation energies of ammonium oxidizer were 81.7 KJ/mol below $20^{\circ}C$, and 32.5 KJ/mol over $20^{\circ}C$, while that of nitrite oxidizer was 35.5 KJ/mol irrespective of temperature variations. The results of nitrification tests conducted at different FA concentrations and temperatures showed that temperature strongly affects nitrite accumulation, while effects due to FA concentrations were found negligible.

Stability of Partial Nitrification and Microbial Population Dynamics in a Bioaugmented Membrane Bioreactor

  • Zhang, Yunxia;Xu, Yanli;Jia, Ming;Zhou, Jiti;Yuan, Shouzhi;Zhang, Jinsong;Zhang, Zhen-Peng
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1656-1664
    • /
    • 2009
  • Bioaugmentation of bioreactors focuses on the removal of numerous organics, with little attention typically paid to the maintenance of high and stable nitrite accumulation in partial nitrification. In this study, a bioaugmented membrane bioreactor (MBR) inoculated with enriched ammonia-oxidizing bacteria (AOB) was developed, and the effects of dissolved oxygen (DO) and temperature on the stability of partial nitrification and microbial community structure, in particular on the nitrifying community, were evaluated. The results showed that DO and temperature played the most important roles in the stability of partial nitrification in the bioaugmented MBR. The optimal operation conditions were found at 2-3 mgDO/l and $30^{\circ}C$, achieving 95% ammonia oxidization efficiency and nitrite ratio ($NO_2^-/{NO_x}^-$) of 0.95. High DO (5-6 mg/l) and low temperature ($20^{\circ}C$) had negative impacts on nitrite accumulation, leading to nitrite ratio drop to 0.6. However, the nitrite ratio achieved in the bioaugmented MBR was higher than that in most previous literatures. Denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH) were used to provide an insight into the microbial community. It showed that Nitrosomonas-like species as the only detected AOB remained predominant in the bioaugmented MBR all the time, and coexisted with numerous heterotrophic bacteria. The heterotrophic bacteria responsible for mineralizing soluble microbial products (SMP) produced by nitrifiers belonged to the Cytophaga-Flavobacterium-Bacteroides (CFB) group, and $\alpha$-, $\beta$-, and $\gamma$- Proteobacteria. The fraction of AOB ranging from 77% to 54% was much higher than that of nitrite-oxidizing bacteria (0.4-0.9%), which might be the primary cause for the high and stable nitrite accumulation in the bioaugmented MBR.

Biofilm airlift 반응기를 이용한 선택적 질산화의 연구

  • Yun, Ho-Jun;Jang, Jae-Seon;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.457-460
    • /
    • 2000
  • A biofilm airlift reactor filled with biomass-covered carriers (sand) were used to remove ammonium by selective nitrification (ammonium to nitrite). The effects of experimental conditions (ammonium load, pH, dissolved oxygen) on nitrification and nitrite accumulation were investigated. The reactor showed more than 90% nitrification efficiencies at 2.5 kg $NH_4\;^+-N/m^3/d$ and $NO_2\;^--N$ could be accumulated between 75% and 90% in the effluent. It is likely that nitratation (nitrite oxidizer) was inhibited by low dissolved oxygen concentration while nitritation (ammonium oxidizer) was kept stable.

  • PDF

The Production of Ergosterol by Saccharomyces sake KBA No. 6 (Saccharomyces sake KBA No. 6에 의한 Ergosterol의 생산)

  • Park, Jang-Woo;Lee, Wang-Sik;Bang, Won-Gi
    • Applied Biological Chemistry
    • /
    • v.33 no.1
    • /
    • pp.87-92
    • /
    • 1990
  • To produce ergosterol Saccharomyces toke KBA No. 6 was used and various factors related to ergosterol accumulation were investigated. The most effective inorganic nitrogen source was ammonium chloride and 3.50 % of ergosterol was accumulated in the cell when the C/N ratio was 200/1. When Tween 80 and potassium nitrite were used simultaneously, ergosterol content and total amount of ergosterol were increased by 56 % and 45 %, respectively, compared to their control in which 0.2 % of Tween 80 and 0.1 % of potassium nitrite were used. Under the optimum conditions, ergosterol content increased from 1.73 % to 5.3 % and the total amount of ergosterol was increased from 65.2 mg/l to 135.15 mg/l.

  • PDF