• Title/Summary/Keyword: nitrides

Search Result 152, Processing Time 0.032 seconds

Formation of Ohmic Contact to AlGaN/GaN Heterostructure on Sapphire

  • Kim, Zin-Sig;Ahn, Hokyun;Lim, Jong-Won;Nam, Eunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.292-292
    • /
    • 2014
  • Wide band gap semiconductors, such as III-nitrides (GaN, AlN, InN, and their alloys), SiC, and diamond are expected to play an important role in the next-generation electronic devices. Specifically, GaN-based high electron mobility transistors (HEMTs) have been targeted for high power, high frequency, and high temperature operation electronic devices for mobile communication systems, radars, and power electronics because of their high critical breakdown fields, high saturation velocities, and high thermal conductivities. For the stable operation, high power, high frequency and high breakdown voltage and high current density, the fabrication methods have to be optimized with considerable attention. In this study, low ohmic contact resistance and smooth surface morphology to AlGaN/GaN on 2 inch c-plane sapphire substrate has been obtained with stepwise annealing at three different temperatures. The metallization was performed under deposition of a composite metal layer of Ti/Al/Ni/Au with thickness. After multi-layer metal stacking, rapid thermal annealing (RTA) process was applied with stepwise annealing temperature program profile. As results, we obtained a minimum specific contact resistance of $1.6{\times}10^{-7}{\Omega}cm2$.

  • PDF

Effect of Mechanical Alloying Atmosphere on Formation of AlN (AlN의 형성에 미치는 기계적 합금화 분위기의 영향)

  • Yu Seung-Hoon;Lee Young Sung;Shin Kwang-Seon
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.214-219
    • /
    • 2005
  • In order to investigate the formation of AlN, mechanical alloying was carried out in $N_2$ and $NH_3$ atmosphere. Differential thermal analysis (DTA), x-ray diffraction (XRD) and chemical analysis were carried out to examine the formation behavior of aluminum nitrides. No diffraction pattern of AlN was observed in XRD analysis of the as-milled powders in $NH_3\;or\;N_2$ atmosphere. However, DTA and chemical analysis indicated that the precursors for AlN were formed in the Al powders milled in $NH_3$ atmosphere. The AlN precursors transformed to AlN after heat treatment at and above $600^{\circ}C$. It was considered that the reaction between Al and $NH_3$ was possible by the formation of fresh Al surface during mechanical alloying of Al powders.

Synthesis of (Ti,Al)N Powder by the Direct Nitridation(II) (직접질화법에 의한 (Ti,Al)N계 복합질화물의 합성(II))

  • Cho, Young-Soo;Lee, Young-Ki;Sohn, Yong-Un;Park, Kyong-Ho;Kim, Seok-Yoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.219-227
    • /
    • 1996
  • The purpose of this research is to develop the technology for the synthesis of (Ti,Al)N powder, which shows simultaneously the excellent properties of TiN and AlN, from the Ti-Al intermetallic compounds by the direct nitriding method. The effects of variables such as temperature, Ti-Al intermetallic compounds ($TiAl_3$, TiAl and $Ti_3Al$) were investigated by TG, XRD and SEM. The (Ti,Al)N powder can be easily synthesized from the intermetallic compounds by the direct nitriding method. Among the intermetallic compounds, the nitriding behavior increased with TiAl> $Ti_3Al$ > $TiAl_3$, as the difference of diffusion coefficient for nitrogen in each materials. The ternary nitride such as $Ti_2AlN$ and $Ti_3Al_2N_2$ can be synthesized by the direct nitriding method, although the ternary nitride coexist with TiN and AlN. The ternary nitrides are stable below $1400^{\circ}C$, but these are gradually decomposed into TiN and AlN above $1400^{\circ}C$.

  • PDF

A Review of Epitaxial Metal-Nitride Films by Polymer-Assisted Deposition

  • Luo, Hongmei;Wang, Haiyan;Zou, Guifu;Bauer, Eve;Mccleskey, Thomas M.;Burrell, Anthony K.;Jia, Quanxi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.54-60
    • /
    • 2010
  • Polymer-assisted deposition is a chemical solution route to high quality thin films. In this process, the polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of crack-free and uniform films after thermal treatment. We review our recent effort to epitaxially grow metal-nitride thin films, such as hexagonal GaN, cubic TiN, AlN, NbN, and VN, mixed-nitride $Ti_{1-x}Al_xN$, ternary nitrides tetragonal $SrTiN_2$, $BaZrN_2$, and $BaHfN_2$, hexagonal $FeMoN_2$, and nanocomposite TiN-$BaZrN_2$.

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates

  • Lee, Jae-Bong;Oh, In Hwan
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.

Effects of Alloying Elements on the Characteristics of Microstructure and High Temperature Oxidation of Cast Austenitic Stainless Steel (오스테나이트 스테인리스 주강의 미세 조직 및 고온 산화 특성에 미치는 합금원소의 영향)

  • Lee, In-Sung;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, Jung-Suk;Ko, Young-Sang;Kim, Jong-Myoung
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.179-186
    • /
    • 2010
  • To elucidate the effects of alloying elements on the characteristics of microstructure and high temperature oxidation of cast austenitic stainless steel, a thermodynamic calculation, a cyclic oxidation test, a X-ray diffraction, a scanning electron microscopy-back scattered electron, a electron probe microanalysis were conducted. The thermodynamic calculation for the effect of vanadium (V) addition on the formation of various precipitates leads to a decrease of chromium (Cr)-rich $M_{23}C_6$ carbides due to the formation of M (C, N) carbo-nitrides containing V and / or niobium (Nb). The V added alloy increased the resistance to high temperature oxidation due to a decrease of Cr-depleted zone deteriorating the oxidation resistance and due to the V-enriched oxide layer formed in inner oxide layer blocking the outward transport of cations.

Thermal Shock and Hot Corrosion Resistance of Si3N4 Fabricated by Nitrided Pressureless Sintering (질화상압(NPS)법으로 제조한 질화규소의 열충격 저항성 및 내부식성 특성평가)

  • Kwak, Kil-Ho;Kim, Chul;Han, In-Sub;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.478-483
    • /
    • 2009
  • Thermal shock and hot corrosion resistance of silicon nitride ceramics are investigated in this study. Silicon nitrides are fabricated by nitride pressureless sintering (NPS) process, which process is the continuous process of nitridation reaction of Si metal combined with subsequent pressureless sintering. The results of thermal shock test show it sustains 400MPa of initial strength during test in the designated condition of ${\Delta}T=700{\sim}25^{\circ}C$ up to maximum 4,800 cycles. Hot corrosion tests also reveal that the strength degradation of NPS silicon nitride did not occur at $700^{\circ}C$ with an exposure in Ar, $H_2$, Na and K for 1,275 h.

An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors

  • Shinde, Nanasaheb M.;Yun, Je Moon;Mane, Rajaram S.;Mathur, Sanjay;Kim, Kwang Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.407-418
    • /
    • 2018
  • Increasing demand for portable and wireless electronic devices with high power and energy densities has inspired global research to investigate, in lieu of scarce rare-earth and expensive ruthenium oxide-like materials, abundant, cheap, easily producible, and chemically stable electrode materials. Several potential electrode materials, including carbon-based materials, metal oxides, metal chalcogenides, layered metal double hydroxides, metal nitrides, metal phosphides, and metal chlorides with above requirements, have been effectively and efficiently applied in electrochemical supercapacitor energy storage devices. The synthesis of self-grown, or in-situ, nanostructured electrode materials using chemical processes is well-known, wherein the base material itself produces the required phase of the product with a unique morphology, high surface area, and moderate electrical conductivity. This comprehensive review provides in-depth information on the use of self-grown electrode materials of different morphologies in electrochemical supercapacitor applications. The present limitations and future prospects, from an industrial application perspectives, of self-grown electrode materials in enhancing energy storage capacity are briefly elaborated.

PAALD 방법을 이용한 TaN 박막의 구리확산방지막 특성

  • 부성은;정우철;배남진;권용범;박세종;이정희
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.14-19
    • /
    • 2002
  • In this study, as Cu diffusion barrier, tantalum nitrides were successfully deposited on Si(100) substrate and SiO2 by plasma assisted atomic layer deposition(PAALD) and thermal ALD, using pentakis (ethylmethlyamino) tantalum (PEMAT) and $NH_3$ as precursors. The TaN films were deposited on $250^{\circ}$C by both method. The growth rates of TaN films were $0.8{\AA}$/cycle for PAALD and $0.75{\AA}$/cycle for thermal ALD. TaN films by PAALD showed good surface morphology and excellent step coverage for the trench with an aspect ratio of h/w - $1.8 : 0.12 \mu\textrm{m}$ but TaN films by thermal ALD showed bad step coverage for the same trench. The density for PAALD TaN was $11g/\textrm{cm}^3$ and one for thermal ALD TaN was $8.3g/\textrm{cm}^3$. TaN films had 3 atomic % carbon impurity and 4 atomic % oxygen impurity for PAALD and 12 atomic % carbon impurity and 9 atomic % oxygen impurity for thermal ALD. The barrier failure for Cu(200nm)/TaN(l0nm)/$SiO_2(85nm)$/Si structure was shown at temperature above $700^{\circ}$C by XRD, Cu etch pit analysis.

  • PDF

Improvement of wear resistance of Zircaloy-4 by nitrogen implantation

  • Han, Jeon G.;Lee, jae S.;Kim, Hyung J.;Kim, W.;Choi, B.Y.;Tang, Guoy
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.06a
    • /
    • pp.151-151
    • /
    • 1995
  • Nitrogen implantation process has been applied for improvement of wear resistance of Z Zircaloy-4 fuel cladding materials. Nitrogen was implanted at 120 ke V to a total do range of 1xHP ions/cm2 to 8xlO17 ions/cm2 at various temperatures of 298"C to 676"C. The m microstructure changes by nitrogen implantation were analyzed by using TEM, XRD 뻐d A AES, cmd then wear behavior was evaluated by ball-on-disc wear testings at various loads a and sliding velocity under unlubricated condition. Nitrogen implantation produced ZrNx nitride above 4.37x1017 ions!cm2 as well as heavy d dislocations, which enhanced microhardness of the implanted surface of up to 900 Hk from 2 200 Hk of unimplanted substrate. Hardness was also found to be increased with increasing i implantation temperature and enhanced up to OOOHk at 620 "C. the wear resistance was g greatly improved with increasing total ion do않 as well as implantation temperature. The effective enhancement of wear resistance at high dose and tem야ratures is believed d due to significant hardening associated with high degree of precipitation of Zr nitrides and g generation of prismatic dislocation I$\infty$ps.infty$ps.

  • PDF