DOI QR코드

DOI QR Code

An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors

  • Shinde, Nanasaheb M. (Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University) ;
  • Yun, Je Moon (Global Frontier R&D Center for Hybrid Interface Materials, Pusan National University) ;
  • Mane, Rajaram S. (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Mathur, Sanjay (Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne) ;
  • Kim, Kwang Ho (Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne)
  • Received : 2018.05.18
  • Accepted : 2018.06.19
  • Published : 2018.09.30

Abstract

Increasing demand for portable and wireless electronic devices with high power and energy densities has inspired global research to investigate, in lieu of scarce rare-earth and expensive ruthenium oxide-like materials, abundant, cheap, easily producible, and chemically stable electrode materials. Several potential electrode materials, including carbon-based materials, metal oxides, metal chalcogenides, layered metal double hydroxides, metal nitrides, metal phosphides, and metal chlorides with above requirements, have been effectively and efficiently applied in electrochemical supercapacitor energy storage devices. The synthesis of self-grown, or in-situ, nanostructured electrode materials using chemical processes is well-known, wherein the base material itself produces the required phase of the product with a unique morphology, high surface area, and moderate electrical conductivity. This comprehensive review provides in-depth information on the use of self-grown electrode materials of different morphologies in electrochemical supercapacitor applications. The present limitations and future prospects, from an industrial application perspectives, of self-grown electrode materials in enhancing energy storage capacity are briefly elaborated.

Keywords

References

  1. L. Dong, C. Xu, Y. Li, Z. Huang, F. Kang, Q. Yang, and X. Zha, "Flexible Electrode and Supercapacitors for Wearable Energy Storage a Review by Category," J. Mater. Chem. A, 4 [13] 4659-85 (2016). https://doi.org/10.1039/C5TA10582J
  2. M. Huang, F. Li, F. Dong, Y. Zhang, and L. Zhang, "$MnO_2$-based Nanostructures for High-Performance Supercapacitors," J. Mater. Chem. A, 3 [43] 21380-423 (2015). https://doi.org/10.1039/C5TA05523G
  3. P. Kulkarni, S. Nataraj, R. Balakrishna, D. Nagaraju, and M. Reddy, "Nanostructured Binary and Ternary Metal Sulfides: Synthesis Methods and Their Application in Energy Conversion and Storage Devices," J. Mater. Chem. A, 5 [42] 22040-94 (2017). https://doi.org/10.1039/C7TA07329A
  4. Q. Xia, N. Shinde, T. Zhang, J. Yun, A. Zhou, R. Mane, S. Mathur, and K. Kim, "Seawater Electrolyte-Mediated High Volumetric MXene-based Electrochemical Symmetric Supercapacitors," Dalton Trans., 47 [26] 8676-82 (2018). https://doi.org/10.1039/C8DT01375F
  5. U. Gulzar, S. Goriparti, E. Miele, T. Li, G. Maidecchi, A. Toma, F. Angelis, C. Capiglia, and R. Proietti Zaccaria, "Next-generation Textiles: from Embedded Supercapacitors to Lithium Ion Batteries," J. Mater. Chem. A, 4 [43] 16771-800 (2016). https://doi.org/10.1039/C6TA06437J
  6. B. Li, M. Zheng, H. Xue, and H. Pang, "High Performance Electrochemical Capacitor Materials Focusing on Nickel Based Materials," Inorg. Chem. Front., 3 [2] 175-202 (2016). https://doi.org/10.1039/C5QI00187K
  7. X. Yu and X. Lou, "Mixed Metal Sulfides for Electrochemical Energy Storage and Conversion," Adv. Energy Mater., 8 [3] 1701592 (2018). https://doi.org/10.1002/aenm.201701592
  8. G. Chen, "Understanding Supercapacitors Based on Nanohybrid Materials with Interfacial Conjugation," Prog. Nat. Sci.: Mater. Int., 23 [3] 245-55 (2013). https://doi.org/10.1016/j.pnsc.2013.04.001
  9. T. Broussea, D. Belangerc, and J. Long, "To Be or Not To Be Pseudocapacitive," J. Electrochem. Soc., 162 [5] A5185-89 (2015). https://doi.org/10.1149/2.0201505jes
  10. D. Dubal, J. Kim, Y. Kim, R. Holze, C. Lokhande, and W. Kim, "Supercapacitors Based on Flexible Substrates: An Overview," Energy Technol., 2 [4] 325-41 (2014). https://doi.org/10.1002/ente.201300144
  11. X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I. Bacho, J. Tu, and H. J. Fan, "Solution Synthesis of Metal Oxides for Electrochemical Energy Storage Applications," Nanoscale, 6 [10] 5008-48 (2014). https://doi.org/10.1039/C4NR00024B
  12. X. Zhao, B. Anchez, P. Dobson, and P. Grant, "The Role of Nanomaterials in Redox-based Supercapacitors for Next Generation Energy Storage Devices," Nanoscale, 3 [3] 839-55 (2011). https://doi.org/10.1039/c0nr00594k
  13. K. Shehzad, Y. Xu, C. Gaoc, and X. Duan, "Three-Dimensional Macro-Structures of Two-Dimensional Nanomaterials," Chem. Soc. Rev., 45 [20] 5541-88 (2016). https://doi.org/10.1039/C6CS00218H
  14. W. Yang, G. Cheng, C. Dong, Q. Bai, X. Chen, Z. Peng, and Z. Zhang, "NiO Nanorod Array Anchored Ni Foam as a Binderfree Anode for High-Rate Lithium Ion Batteries," J. Mater. Chem. A, 2 [47] 20022-29 (2014). https://doi.org/10.1039/C4TA04809A
  15. A. Dominguez, O. Quispe, and J. Gonzalez, "Characterization of Ni Thin Films Following Thermal Oxidation in Air," J. Vac. Sci. Technol. B, 32 [5] 051808 (2014). https://doi.org/10.1116/1.4895846
  16. J. Sagu, K. Wijayantha, M. Bohm, S. Bohm, and T. Rout, "Anodized Steel Electrodes for Supercapacitors," ACS Appl. Mater. Interfaces, 8 [9] 6277-85 (2016). https://doi.org/10.1021/acsami.5b12107
  17. T. Burleigh, T. D. Dotson, K. Dotson, S. Gabay, T. Sloan, and S. Ferrell, "Anodizing Steel in KOH and NaOH Solutions," J. Electrochem. Soc., 154 [10] C579-86 (2007). https://doi.org/10.1149/1.2767417
  18. Y. Konno, E. Tsuji, P. Skeldon, G. Thompson, and H. Habazaki, "Factors Influencing the Growth Behaviour of Nanoporous Anodic Films on Iron Under Galvanostatic Anodizing," J. Solid State Electrochem., 16 [12] 3887-96 (2012). https://doi.org/10.1007/s10008-012-1833-1
  19. W. Lu, Y. Sun, H. Dai, P. Ni, S. Jiang, Y. Wang, Z. Li, and Z. Li, "CuO Nanothorn Arrays on Three-dimensional Copper Foam as an Ultra-highly Sensitive and Efficient Nonenzymatic Glucose Sensor," RSC Adv., 6 [20] 16474-80 (2016). https://doi.org/10.1039/C5RA24579F
  20. J. Wan, A. Pang, D. He, J. Liu, H. Suo, and C. Zhao, "A High-Performance Supercapacitor Electrode Based on Three-Dimensional Poly-Rowed Copper Hydroxide Nanorods on Copper Foam," J. Mater. Sci.: Mater. Electron., 29 [4] 2660-67 (2018). https://doi.org/10.1007/s10854-017-8192-8
  21. Y. Lu, H. Yan, K. Qiu, J. Cheng, W. Wang, X. Liu, C. Tang, J. Kim, and Y. Luo, "Hierarchical Porous CuO Nanostructures with Tunable Properties for High Performance Supercapacitors," RSC Adv., 5 [14] 10773-81 (2015). https://doi.org/10.1039/C4RA16924G
  22. D. He, G. Wang, G. Liu, H. Suoa, and C. Zhao, "Construction of Leaf-like CuO-$Cu_2O$ Nanocomposites on Copper Foam for High-Performance Supercapacitors," Dalton Trans., 46 [10] 3318-24 (2017). https://doi.org/10.1039/C7DT00287D
  23. Y. Liu, X. Teng, Y. Mia, and Z. Chen, "A New Architecture Design of Ni-Co LDH-Based Pseudocapacitors," J. Mater. Chem. A, 5 [46] 24407-15 (2017). https://doi.org/10.1039/C7TA07795E
  24. P. Pazhamalai, K. Krishnamoorthy, and S. Kim, "Hierarchical Copper Selenide Nanoneedles Grown on Copper Foil as a Binder Free Electrode for Supercapacitors," Int. J. Hydrogen Energy, 41 [33] 14830-35 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.157
  25. S. Ni, X. Lv, J. Ma, X. Yang, and L. Zhang, "A Novel Electrochemical Reconstruction in Nickel Oxide Nanowalls on Ni Foam and the Fine Electrochemical Performance as Anode for Lithium Ion Batteries," J. Power Sources, 270 564-68 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.137
  26. W. Yang, G. Cheng, C. Dong, Q. Bai, X. Chen, Z. Peng, and Z. Zhang, "NiO Nanorod Array Anchored Ni Foam as a Binder-free Anode for High-Rate Lithium Ion Batteries," J. Mater. Chem. A, 2 [47] 20022-29 (2014). https://doi.org/10.1039/C4TA04809A
  27. Li Yang, L. Qian, X. Tian, J. Li, J. Dai, Y. Guo, and D. Xiao, "Hierarchically Porous Nickel Oxide Nanosheets Grown on Nickel Foam Prepared by One-Step in situ Anodization for High-Performance Supercapacitors," Chem. Asian J., 9 [6] 1579-85 (2014). https://doi.org/10.1002/asia.201402175
  28. B. Hu, X. Qin, A. Asiri, K. Alamry, A. Youbi, and X. Sun, "Fabrication of $Ni(OH)_2$ Nanoflakes Array on Ni Foam as a Binder-free Electrode Material for High Performance Supercapacitors," Electrochim. Acta, 107 339-42 (2013). https://doi.org/10.1016/j.electacta.2013.06.003
  29. J. M. Xu, K. Ma, and J. Cheng, "Controllable in situ Synthesis of $Ni(OH)_2$ and NiO Films on Nickel Foam as Additive-free Electrodes for Electrochemical Capacitors," J. Alloys Compd., 653 88-94 (2015). https://doi.org/10.1016/j.jallcom.2015.08.258
  30. L. Li, J. Xu, J. Lei, J. Zhang, F. McLarnon, Z. Wei, N. Li, and F. Pan, "A One-Step, Cost-Effective Green Method to in Situ Fabricate $Ni(OH)_2$ Hexagonal Platelets on Ni foam as Binder-Free Supercapacitor Electrode Materials," J. Mater. Chem. A, 3 [5] 1953-60 (2015). https://doi.org/10.1039/C4TA05156D
  31. X. Lia, G. Chen, K. Xiao, N. Li, T. Ma, and Z. Liu, "Self-Supported Amorphous-Edge Nickel Sulfide Nanobrush for Excellent Energy Storage," Electrochim. Acta, 255 153-59 (2017). https://doi.org/10.1016/j.electacta.2017.09.162
  32. Z. Zhang, Z. Huang, L. Ren, Y. Shen, X. Qi, and J. Zhong, "One-Pot Synthesis of Hierarchically Nanostructured $Ni_3S_2$ Dendrites as Active Materials for Super Capacitors," Electrochim. Acta, 149 316-23 (2014). https://doi.org/10.1016/j.electacta.2014.10.097
  33. K. Krishnamoorthy, G. Veerasubramani, S. Radhakrishnan, and S. J. Kim, "One Pot Hydrothermal Growth of Hierarchical Nanostructured $Ni_3S_2$ on Ni Foam for Supercapacitor Application," Chem. Eng. J. Chem., 251 116-22 (2014). https://doi.org/10.1016/j.cej.2014.04.006
  34. M. Yu, W. Wang, C. Li, T. Zhai, X. Lu, and Y. Tong, "Scalable Self-Growth of Ni@NiO Core-Shell Electrode with Ultrahigh Capacitance and Super-Long Cyclic Stability for Supercapacitors," NPG Asia Mater., 6 e129 (2014). https://doi.org/10.1038/am.2014.78
  35. W. Li, S. Wang, L. Xin, M. Wu, and X. Lou, "Single-Crystal ${\beta}$-NiS Nanorod Arrays with a Hollow Structured $Ni_3S_2$ Framework for Supercapacitor Applications," J. Mater. Chem. A, 4 [20] 7700-9 (2016). https://doi.org/10.1039/C6TA01133K
  36. S. Jiang, J. Wu, B. Ye, Y. Fan, J. Ge, Q. Guo, and M. Huang, "Growth of $Ni_3Se_2$ Nanosheets on Ni Foam for Asymmetric Supercapacitors," J. Mater. Sci.: Mater. Electron., 29 [6] 4649-57 (2018). https://doi.org/10.1007/s10854-017-8416-y
  37. K. Guo, F. Yang, S. Cui, W. Chen, and L. Mi, "Controlled Synthesis of 3D Hierarchical NiSe Microspheres for High-Performance Supercapacitor Design," RSC Adv., 6 [52] 46523-30 (2016). https://doi.org/10.1039/C6RA06909F
  38. B. Ye, M. Huang, Q. Bao, S. Jiang, J. Ge, H. Zhao, L. Fan, J. Lin, and J. Wu, "Construction of NiTe/NiSe Composites on Ni Foam for High-Performance Asymmetric Supercapacitor," ChemElectroChem, 5 [3] 507-14 (2018). https://doi.org/10.1002/celc.201701033
  39. B. Ye, M. Huang, S. Jiang, L. Fan, J. Lin, and J. Wu, "Insitu Growth of Se-Doped NiTe on Nickel Foam as Positive Electrode Material for High-Performance Asymmetric Supercapacitor," Mater. Chem. Phys., 211 389-98 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.011
  40. A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 37-8 (1972). https://doi.org/10.1038/238037a0
  41. P. Yang, D. Chao, C. Zhu, X. Xia, Y. Zhang, X. Wang, P. Sun, B. Tay, Z. Shen, W. Mai, and H. Jin Fan, "Ultrafast-Charging Supercapacitors Based on Corn-Like Titanium Nitride Nanostructures," Adv. Sci., 3 [6] 1500299 (2016). https://doi.org/10.1002/advs.201500299
  42. M. Salari, S. Aboutalebi, K. Konstantinov, and H. Liu, "A Highly Ordered Titania Nanotube Array as a Supercapacitor Electrode," Phys. Chem. Chem. Phys., 13 [11] 5038-41 (2011). https://doi.org/10.1039/c0cp02054k
  43. M. Zhou, A. M. Glushenkov, O. Kartachova, Y. Li, and Y. Chena, "Titanium Dioxide Nanotube Films for Electrochemical Supercapacitors: Biocompatibility and Operation in an Electrolyte Based on a Physiological Fluid," J. Electrochem. Soc., 162 [5] A5065-69 (2015). https://doi.org/10.1149/2.0101505jes
  44. D. Shinde, D. Lee, S. Patil, I. Lim, S. Bhande, W. Lee, M. Sung, R. Mane, N. Shrestha, and S. Han, "Anodically Fabricated Self-organized Nanoporous Tin Oxide Film as a Supercapacitor Electrode Material," RSC Adv., 3 [24] 9431-35 (2013). https://doi.org/10.1039/c3ra22721a
  45. L. Zheng, Y. Dong, H. Bian, C. Lee, J. Lu, and Y. Li, "Self-Ordered Nanotubular $TiO_2$ Multilayers for High-Performance Photocatalysts and Supercapacitors," Electrochim. Acta, 203 257-64 (2014).
  46. Z. Endut, M. Hamdi, and W. Basirun, "Supercapacitance of Bamboo-type Anodic Titania Nanotube Arrays," Surf. Coat. Technol., 215 75-8 (2013). https://doi.org/10.1016/j.surfcoat.2012.07.098
  47. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, "Hydrogenated $TiO_2$ Nanotube Arrays for Supercapacitors," Nano Lett., 12 [3] 1690-96 (2012). https://doi.org/10.1021/nl300173j
  48. R. Ambade, S. Ambade, N. Shrestha, Y.-C. Nah, S.-H. Han, W. Lee, and S.-H. Lee, "Polythiophene Infiltrated $TiO_2$ Nanotubes as High-Performance Supercapacitor Electrodes," Chem. Commun., 49 [23] 2308-10 (2013). https://doi.org/10.1039/c3cc00065f
  49. S. Mujawar, S. Ambade, T. Battumur, R. Ambade, and S.-H. Lee, "Electropolymerization of Polyaniline on Titanium Oxide Nanotubes for Supercapacitor Application," Electrochim. Acta, 56 [12] 4462-66 (2011). https://doi.org/10.1016/j.electacta.2011.02.043
  50. A. Al-Osta, V. V. Jadhav, M. K. Zate, R. S. Mane, K. N. Hui, and S.-H. Han, "Electrochemical Supercapacitors of Anodized Brass Templated NiO Nanostrutured Electrodes," Scr. Mater., 99 29-32 (2015). https://doi.org/10.1016/j.scriptamat.2014.11.019
  51. E. S. Jang, "Precent Progress in Synthesis of Plate-like ZnO and its Applications: A Review," J. Korean Ceram. Soc., 54 [3] 167-83 (2017). https://doi.org/10.4191/kcers.2017.54.3.04
  52. J. Kim and J. H. Lim, "Organic-Inorganic Hybrid Thermoelectric Materials Synthesis and Properties," J. Korean Ceram. Soc., 54 [4] 272-77 (2017). https://doi.org/10.4191/kcers.2017.54.4.12
  53. S. Kang, R. C. Pawar, T. J. Park, J. G. Kim, S. H. Ahn, and C. S. Lee, "Minimization of Recombination Losses in 3D Nanostructured $TiO_2$ Coated with Few Layered $g-C_3N_4$ for Extended Photo-Response," J. Korean Ceram. Soc., 53 [4] 393-99 (2016). https://doi.org/10.4191/kcers.2016.53.4.393
  54. N. Shinde, A. Jagadale, V. Kumbhar, T. Rana, J. Kim, and C. Lokhande, "Wet Chemical Synthesis of $WO_3$ Thin Films for Supercapacitor Application," Korean J. Chem. Eng., 32 [5] 974-79 (2015). https://doi.org/10.1007/s11814-014-0323-9

Cited by

  1. a thermal approach for effective water splitting vol.9, pp.4, 2019, https://doi.org/10.1039/C8CY02318B
  2. Sulphur Source-Inspired Self-Grown 3D NixSy Nanostructures and Their Electrochemical Supercapacitors vol.11, pp.4, 2018, https://doi.org/10.1021/acsami.8b17689
  3. High energy and power density of self-grown CuS@Cu2O core-shell supercapattery positrode vol.23, pp.9, 2018, https://doi.org/10.1007/s10008-019-04351-0
  4. Microwave‐assisted solvothermal synthesis of sodium metal fluoride (Na x MF y ) nanopowders vol.102, pp.11, 2018, https://doi.org/10.1111/jace.16702
  5. NiO nanoflakes decorated needle-like MnCo2O4 hierarchical structure on nickle foam as an additive-free and high performance supercapacitor electrode vol.56, pp.14, 2021, https://doi.org/10.1007/s10853-021-05810-8
  6. Fluorine-doped graphene oxide prepared by direct plasma treatment for supercapacitor application vol.428, pp.None, 2022, https://doi.org/10.1016/j.cej.2021.132086