• Title/Summary/Keyword: nitric oxide generation

Search Result 258, Processing Time 0.027 seconds

Molecular Mechanisms of Inhibitory Activities of Tanshinones on Lipopolysaccharide-Induced Nitric Oxide Generation in RAW 264.7 Cells

  • Choi, Hong-Seok;Cho, Dong-Im;Choi, Hoo-Kyun;Im, Suhn-Yong;Ryu, Shi-Yong;Kim , Kyeong-Man
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1233-1237
    • /
    • 2004
  • The effects of four tanshinones isolated from Tanshen (the root of Salvia miltiorrhiza Bunge, Labiatae) were tested for their inhibition of nitric oxide production in macrophage cells, and the underlying molecular mechanisms studied. Of the four tanshinones used, 15, 16-dihydrotanshinone- I, tanshinone-IIA and cryptotanshinone, but not tanshinone I, demonstrated significant inhibition of the LPS-induced nitric oxide production in RAW 264.7 cells, with calculated $IC_{50}$ values of 5, 8, and 1.5 ${\mu}M$ , respectively. Tanshinones exerted inhibitory activities on the LPS-induced nitric oxide production only when applied concurrently with LPS, and tanshinone- IIA and cryptotanshinone were found to inhibit LPS-induced NF-$_KB$ mobilization and extracellular- regulated kinase (ERK) activation, respectively. These results suggest that tanshinones inhibit LPS-induced nitric oxide generation by interfering with the initial stage of LPS-induced expression of certain genes. NF-$_KB$ and ERK could be the molecular targets for tanshinones for the inhibition of LPS-induced nitric oxide production in macrophage cells.

Change of the Radiation-induced NO(nitric oxide) in Mice with Treatment by Algin-oligosaccharide (알긴산올리고당 처치 마우스에서 방사선 유도 산화질소의 변화)

  • Jang, Woo-Young;Choi, Seong-Kwan;Dong, Kyung-Rae
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.211-217
    • /
    • 2009
  • In order to find out the radioprotective effect of algin-oligosaccharide, this study, with a mouse of which whole body irradiated by 3 Gy radiation once, measured nitric oxide. In nitric oxide test for observing the reaction of cell inflammation, nitric oxide showed decreased in the irradiation control group, while 3 day's treatment group with algin-oligosaccharide before or after irradiation indicated higher than the irradiation control group, especially showed big difference in 3 day's treatment group before irradiation (P<0.001). Consequently, this study inquired into the fact that algin-oligosaccharide with superior antioxidant activity performed radiation protection by increasing promotion of nitric oxide generation and confirmed that natural product with less chemical toxicity was able to be applied as radioprotector.

Effects of Acute Exercise on Nitric Oxide Generation from Mouse Macrophages

  • Shin, Jung-Hee;Kim, Jin;Kim, Hyun-Sook;Kwon, Nyun-Soo
    • Nutritional Sciences
    • /
    • v.5 no.3
    • /
    • pp.123-128
    • /
    • 2002
  • Physical activity is a primary cancer control strategy that has received little attention to date. However, an Increasing number of epidemiological studies have proposed that physical exercise may be beneficial by enhancing anticancer immune system responses. We investigated the effects of acute exercise on changes in nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression. The amounts of NO generated by abdominal macrophages in mice were measured after exercise. Thirty-two mice, which were challenged with thioglycollate broth to activate peritoneal macrophages, were randomly assigned to control, exercise and recovery groups. The mice exercised on a motor-driven treadmill for 3 consecutive days, either moderately (18m/min, 30 min/day, 5% grade) or severely (18-35m/min, 60 min/day, 5% grade). The mice were killed immediately after exercise or after 6 hrs of recovery. Nitric oxide was quantified by the Griess assay. The exercised mice showed higher levels of NO generation than those of the control mice, but the intensity of exercise had no significant effect on NO generation. Mice allowed six hours of recovery after exercise showed higher levels of NO generation than that of animals sacrificed immediately after exercise, but there were no significant differences in NO generation with variations in the intensity of exercise. Increased levels of iNOS were found in the exercised groups, and this was greatest in the groups allowed six hours of recovery compared to those groups sacrificed immediately after exercise. The results of this study suggest that acute exercise may enhance an immune response by inducing macrophage-derived NO generation; these results support the epidemiological findings which support the benefits of exercise in the prevention and control of cancer. Further study is needed to determine the physiological significance of these findings, which could be applied to the use of therapeutic exercises to assist in the prevention and control of cancer.

Nitric Oxide Generation from Peritoneal Macrophages by Salvia miltiorrhiza Root Water Extract (단삼(丹蔘) 수침액에 의한 복강대식세포로부터 산화질소의 발생)

  • Jo, Hyun-Ju;Moon, Seok-Jae
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.143-152
    • /
    • 1999
  • Dansam, the root of Salvia miltiorrhiza Bge, (Labiatae), has a bitter taste and a slightly 'cold' property, and is nontoxic. In the present study, effect of Dansam on nitric oxide (NO) generation from peritoneal macrophags was examined. Dansam had no effect on NO generation by itself, whereas recombinant interferon-${\gamma}\;(rIFN-{\gamma})$ alone had modest activity. When Dansam was used in combination with $rIFN-{\gamma}$, there was a marked cooperative induction of NO generation in a dose-dependent manner, The optimal effect of Dansam on NO generation was shown at 6 hr after treatment with $rIFN-{\gamma}$. Furthermore, the effect of Dansam was mainly dependent on Dansam-induced tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ secretion. These results suggest that Dansam induces NO generation from macrophages by the result of Dansam-induced $TNF-{\alpha}$ secretion.

  • PDF

Effects of Esthetic Essential Oils on LPS-Induced Nitric Oxide Generation in Murine Marcrophage RAW 264,7 Cells (Medical Skin Care에서 사용빈도가 높은 Esthetic Essential Oils에 의한 Nitric Oxide 생성억제 효과)

  • Hong, Jin-Tae;Lee, Hwa-Jeong;Lee, Chung-Woo;Choi, Myoung-Suk;Son, Dong-Ju
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.2 s.57
    • /
    • pp.111-116
    • /
    • 2006
  • Essential oils have been used extensively in pharmacy, medicine, food, beverages, cosmetics, perfumery and aromatherapy. Although anti-bacteria, anti-virus, alleviation of fever operations and an anti-inflammatory properties have been reported, action mechanisms have not been fully discovered. In the present study, anti-inflammatory activities of thirty three essential oils have been evaluated in lipopolysaccharide (LPS)-treated macrophage RAW 264.7 cells by the evaluation of nitric oxide (NO) generation since NO generation is implicated in causal factor of inflammation. Among the tested 33 essential oil, Lemongrass oil showed the most inhibitory effect on LPS-induced NO generation in a dose dependent manner ($IC_{50}$ : $22 {\mu}g/mL$). In further study, it was found that Lemongrass oil inhibited the expression of inducible nitric oxide synthase. These results suggest that Lemongrass oil may be useful for improvements of the inflammatory disease such as pimple acne skin.

Upregulation of Nitric Oxide Synthase Activity by All-trans Retinoic Acid and 13-cis Retinoic Acid in Human Malignant Keratinocytes

  • Moon, Ki-Young
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.196-200
    • /
    • 2019
  • Effect of retinoids, i.e., all-trans retinoic acid and 13-cis retinoic acid, on the activity of nitric oxide synthase (NOS) was evaluated in human malignant keratinocytes to examine the possible correlation of retinoids with NOS activities. All-trans retinoic acid and 13-cis retinoic acid did not alter the nitric oxide (NO) production. However, in the presence of lipopolysaccharide (LPS, $1{\mu}g/mL$), they significantly increased NO release in a dose-dependent manner until 48 h at concentrations of $50{\sim}100{\mu}M$. The degree of upregulation of NO by all-trans retinoic acid and 13-cis retinoic acid increased up to 35% and 37%, respectively, compared to that by the control, which demonstrated the upregulation of LPS-inducible nitric oxide synthase (iNOS)-dependent generation of NO as well as showing a crucial link between retinoids-induced activity and NOS. Findings of this study now suggest that the upregulation of LPS-iNOS activity may be associated with modulation of retinoids-induced control of cellular developmental processes, which may produce new therapeutics of retinoids in the complexity of how NO affects human keratinocytes.

Ursolic Acid Reduces Mycobacterium tuberculosis-Induced Nitric Oxide Release in Human Alveolar A549 cells

  • Zerin, Tamanna;Lee, Minjung;Jang, Woong Sik;Nam, Kung-Woo;Song, Ho-yeon
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.610-615
    • /
    • 2015
  • Alveolar epithelial cells have been functionally implicated in Mycobacterium tuberculosis infection. This study investigated the role of ursolic acid (UA)-a triterpenoid carboxylic acid with potent antioxidant, anti-tumor, anti-inflammatory, and anti-tuberculosis properties in mycobacterial infection of alveolar epithelial A549 cells. We observed that M. tuberculosis successfully entered A549 cells. Cytotoxicity was mediated by nitric oxide (NO). A549 toxicity peaked along with NO generation 72 h after infection. The NO generated by mycobacterial infection in A549 cells was insufficient to kill mycobacteria, as made evident by the mycobacteria growth indicator tube time to detect (MGIT TTD) and viable cell count assays. Treatment of mycobacteria-infected cells with UA reduced the expression of inducible nitric oxide synthase, NO generation, and eventually improved cell viability. Moreover, UA was found to quench the translocation of the transcription factor, nuclear factor kappa B (NF-${\kappa}B$), from the cytosol to the nucleus in mycobacteria-infected cells. This study is the first to demonstrate the cytotoxic role of NO in the eradication of mycobacteria and the role of UA in reducing this cytotoxicity in A549 cells.

Nitric Oxide Generation from Peritoneal Macrophages by Human Chorionic Gonadotropin (사람 융모 성선 자극 호르몬에 의한 복강 대식세로로부터 산화질소의 발생)

  • Lee, Eun-Hee;Shin, Tae-Yong;Kim, Hyung-Min
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.365-369
    • /
    • 1997
  • Human chorionic gonadotropin (hCG) is a placental hormone and is involved in maintenance of the corpus luteum during pregnancy. In the present study, effect of hCG on nitiric ox ide (NO) generation from peritoneal macrophage was examined. hCG ahd no effect on NO generation by itself, whereas recombinant interferon- ${\gamma}$ (rIFN-${\gamma}$) alone had modest activity. When hCG was used in combination with rIFN-${\gamma}$, there was a marked cooperative induction of NO generation in a dose-dependent manner. The optimal effect of hCG on NO generation was shown at 6 hr after treatment with rIFN-${\gamma}$. Furthermore, northern blot analysis of showed that hCG increased the expression of inducible NO synthase(iNOS) gene. These results suggest that hCG induces NO generation from macrophages by increasing the expression of iNOS gene.

  • PDF

Altered Renal Nitric Oxide System in Experimental Hypertensive Rats

  • Yang, Eun-Suk;Lee, Jong-Un;Kang, Dae-Gill
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.455-460
    • /
    • 1998
  • The present study was aimed at investigating whether the development of hypertension is related with an altered expression of nitric oxide synthases (NOS) in the kidney. By Western blot analysis, the expression of bNOS and ecNOS isoforms was determined in the kidney of deoxycorticosterone acetate (DOCA)-salt and two-kidney, one clip (2K1C) rats. In DOCA-salt hypertension, the expression of both bNOS and ecNOS was decreased, along with tissue contents of nitrites. In 2K1C hypertension, the nitrite content of the clipped kidney was decreased along with ecNOS levels, whereas neither the nitrite content nor the expression of NOS isoforms was significantly altered in the contralateral non-clipped kidney. These results suggest that the development of hypertension is associated with an altered renal expression of NOS and nitric oxide generation in DOCA-salt and 2K1C rats.

  • PDF

Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng

  • Tewari, Rajesh Kumar;Kim, Soohyun;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.113-122
    • /
    • 2008
  • Nitric oxide (NO) affects the growth and development of plants and also affects plant responses to various stresses. Because NO induces root differentiation, we examined whether or not it is involved in increased ROS generation. Treatments with sodium nitroprusside (SNP), an NO donor, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, and $N{\omega}-nitro-{\text\tiny{L}}-arginine$ methyl ester hydrochloride (${\text\tiny{L}}-NAME$), an NO synthase (NOS) inhibitor, revealed that NO is involved in the adventitious root growth of mountain ginseng. Supply of an NO donor, SNP, activates NADPH oxidase activity, resulting in increased generation of $O_2{^{{\cdot}-}}$, which subsequently induces growth of adventitious roots. Moreover, treatment with diphenyliodonium chloride (DPI), an NADPH oxidase inhibitor, individually or with SNP, inhibited root growth, NADPH oxidase activity, and $O_2{^{{\cdot}-}}$ anion generation. Supply of the NO donor, SNP, did not induce any notable isoforms of enzymes; it did, however, increase the activity of pre-existing bands of NADPH oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Enhanced activity of antioxidant enzymes induced by SNP supply seems to be responsible for a low level of $H_2O_2$ in the adventitious roots of mountain ginseng. It was therefore concluded that NO-induced generation of $O_2{^{{\cdot}-}}$ by NADPH oxidase seems to have a role in adventitious root growth of mountain ginseng. The possible mechanism of NO involvement in $O_2{^{{\cdot}-}}$ generation through NADPH oxidase and subsequent root growth is discussed.