Molecular Mechanisms of Inhibitory Activities of Tanshinones on Lipopolysaccharide-Induced Nitric Oxide Generation in RAW 264.7 Cells

  • Choi, Hong-Seok (Department of Pharmacology, College of Pharmacy, Drug Development Research Center , Chonnam National University) ;
  • Cho, Dong-Im (Department of Pharmacology, College of Pharmacy, Drug Development Research Center , Chonnam National University) ;
  • Choi, Hoo-Kyun (College of Pharmacy, Chosun University) ;
  • Im, Suhn-Yong (Department of Biological Sciecnces, Chonnam National University) ;
  • Ryu, Shi-Yong (Korea Research Institute of Chemical Technology) ;
  • Kim , Kyeong-Man (Department of Pharmacology, College of Pharmacy, Drug Development Research Center , Chonnam National University)
  • Published : 2004.01.01

Abstract

The effects of four tanshinones isolated from Tanshen (the root of Salvia miltiorrhiza Bunge, Labiatae) were tested for their inhibition of nitric oxide production in macrophage cells, and the underlying molecular mechanisms studied. Of the four tanshinones used, 15, 16-dihydrotanshinone- I, tanshinone-IIA and cryptotanshinone, but not tanshinone I, demonstrated significant inhibition of the LPS-induced nitric oxide production in RAW 264.7 cells, with calculated $IC_{50}$ values of 5, 8, and 1.5 ${\mu}M$ , respectively. Tanshinones exerted inhibitory activities on the LPS-induced nitric oxide production only when applied concurrently with LPS, and tanshinone- IIA and cryptotanshinone were found to inhibit LPS-induced NF-$_KB$ mobilization and extracellular- regulated kinase (ERK) activation, respectively. These results suggest that tanshinones inhibit LPS-induced nitric oxide generation by interfering with the initial stage of LPS-induced expression of certain genes. NF-$_KB$ and ERK could be the molecular targets for tanshinones for the inhibition of LPS-induced nitric oxide production in macrophage cells.

Keywords

References

  1. Aga, M., Watters, J. J., Pfeiffer, Z. A., Wiepz, G. J., Sommer, J. A., and Berlics, P. J., Evidence for nucleotide receptor modulation of cross talkbetween MAP kinase and NF-kappa B signaling pathways in murine RAW 264.7 macrophages. Am. J. Physiol. Cell Physiol., 286, C923-C930 (2004) https://doi.org/10.1152/ajpcell.00417.2003
  2. Baeuerle, P. A. and Henkel, T., Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol., 12, 141-179 (1994) https://doi.org/10.1146/annurev.iy.12.040194.001041
  3. Bethea, J. R., Ohmori, Y., and Hamilton, T. A., A tandem GC box motif is necessary for lipopolysaccharide-induced transcription of the type II TNF receptor gene. J. Immunol., 158, 5815-5823 (1997)
  4. Chen, C., Chen, Y. H., and Lin, W. W., Involvement of p38 mitogen-activated protein kinase in Iipopolysaccharide- induced iNOS and COX-2 expression in J774 macrophages. Immunology, 97, 124-129 (1999) https://doi.org/10.1046/j.1365-2567.1999.00747.x
  5. Chen, C. C. and Wang, J. K., p38 but not p44/42 mitogenactivated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol. Pharmacal., 55, 481-488 (1999)
  6. Cho, D. I., Koo, N. Y., Chung, W J., Kim, T. S., Ryu, S. Y., 1m, S. Y., and Kim, K. M., Effects of resveratrol-related hydroxystilbenes on the nitric oxide production in macrophage cells: structural requirements and mechanism of action. Life Sci., 71, 2071-2082 (2002) https://doi.org/10.1016/S0024-3205(02)01971-9
  7. Choi, H. S. and Kim, K. M., Tanshinones inhibit mast cell degranulation by interfering with IgE receptor-mediated tyrosine phosphorylation of PLCgamma2 and MAPK. Planta Med., 70, 178-180 (2004) https://doi.org/10.1055/s-2004-815498
  8. Furchgott, R. F. and Zawadzki, J. V., The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373-376 (1980) https://doi.org/10.1038/288373a0
  9. lm, S. Y., Han, S. J., Ko, H. M., Choi, J. H., Chun, S. B., Lee, D. G., Ha, T. Y., and Lee, H. K., Involvement of nuclear factorkappa B in platelet-activating factor- mediated tumor necrosis factor-alpha expression. Eur. J. Immunol., 27, 2800-2804 (1997) https://doi.org/10.1002/eji.1830271109
  10. Jang, S. I., Jeong, S. I., Kim, K. J., Kim, H. J., Yu, H. H., Park, R., Kim, H. M., and You, YO., Tanshinone IIA from Salvia miltiorrhiza inhibits inducible nitric oxide synthase expression and production of TNF-alpha, IL-1beta and IL-6 in activated RAW 264.7 cells. Planta Med., 69, 1057-1059 (2003) https://doi.org/10.1055/s-2003-45157
  11. Jaramillo, M., Gowda, D. C., Radzioch, D., and Olivier, M., Hemozoin increases IFN-gamma-inducible macrophage nitric oxide generation through extracellular signal-regulated kinase- and NF-kappa B-dependent pathways. J. Immunol., 171, 4243-4253 (2003)
  12. Kang, B. Y., Chung, S. W., Kim, S. H., Ryu, S. Y., and Kim, T. S., Inhibition of interleukin-12 and interferon-gamma production in immune cells by tanshinones from Salvia miltiorrhiza. Immunopharmacology 49, 355-361 (2000) https://doi.org/10.1016/S0162-3109(00)00256-3
  13. Kim, H. H., Kim, J. H., Kwak, H. B., Huang, H., Han, S. H., Ha, H., Lee, S. W, Woo, E. R., and Lee, Z. H., Inhibition of osteoclast differentiation and bone resorption by tanshinone IIA isolated from Salvia miltiorrhiza Bunge. Biochem. Pharmacol., 67, 1647-1656 (2004) https://doi.org/10.1016/j.bcp.2003.12.031
  14. Kim, J. Y., Kim, K. M., Nan, J. X., Zhao, Y. Z.. Park, P. H., Lee, S. J., and Sohn, D. H., Induction of apoptosis by tanshinone I via cytochrome c release in activated hepatic stellate cells. Pharmacol. Toxicol., 92, 195-200 (2003) https://doi.org/10.1034/j.1600-0773.2003.920410.x
  15. Kim, S. Y., Moon, T. C., Chang, H. W., Son, K. H., Kang, S. S., and Kim, H. P., Effects of tanshinone I isolated from Salvia miltiorrhiza bunge on arachidonic acid metabolism and in vivo inflammatory responses. Phytother. Res., 16, 616-620 (2002) https://doi.org/10.1002/ptr.941
  16. Ryu, S. Y., Kou, N. Y., Choi, H. S., Ryu, H., Kim, T. S., and Kim, K. M., Cnidicin, a coumarin, from the root of Angelica koreana, inhibits the degranulation of mast cell and the NO generation in RAW 264.7 cells. Planta Med., 67, 172-174 (2001) https://doi.org/10.1055/s-2001-11509
  17. Ryu, S. Y., Lee, C. O., and Choi, S. U., In vitro cytotoxicity of tanshinones from Salvia miltiorrhiza. Planta Med., 63, 339-342 (1997) https://doi.org/10.1055/s-2006-957696
  18. Ryu, S. Y., Oak, M. H., and Kim, K. M., Inhibition of mast cell degranulation by tanshinones from the roots of Salvia miltiorrhiza. Planta. Med., 65, 654-655 (1999) https://doi.org/10.1055/s-2006-960839
  19. Seol, I. W., Kuo, N. Y., and Kim, K. M., Effects of dopaminergic drugs on the mast cell degranulation and nitric oxide generation in RAW 264.7 cells. Arch. Pharm. Res., 27, 94-98 (2004) https://doi.org/10.1007/BF02980053
  20. Walker, G., Pfeilschifter, J., and Kunz, D., Mechanisms of suppression of inducible nitric-oxide synthase (iNOS) expression in interferon (IFN)-gamma-stimulated RAW 264.7 cells by dexamethasone. Evidence for glucocorticoidinduced degradation of iNOS protein by calpain as a key step in post-transcriptional regulation. J. BioI. Chem., 272, 16679-16687 (1997) https://doi.org/10.1074/jbc.272.26.16679
  21. Wei, X. Q., Charles, I. G., Smith, A., Ure, J., Feng, G. J., Huang, F. P., Xu, D., Muller, W, Moncada, S., and Liew, F. Y, Altered immune responses in mice lacking inducible nitric oxide synthase. Nature, 375, 408-411 (1995) https://doi.org/10.1038/375408a0