• Title/Summary/Keyword: nitric acid treatment

Search Result 303, Processing Time 0.025 seconds

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

Study on the Effect of Surface Finishing Methods on Pitting Corrosion Behavior of 304 Stainless Steel Alloy

  • Yun, JunTae;kim, Se-Woong;Hwang, HyangAn;Toor, Ihsan-Ul-Haq;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.209-216
    • /
    • 2009
  • In this study the effect of different surface finishing techniques on the pitting corrosion behaviour of a commercial 304 stainless steel alloy was investigated. Surface finishing methods were divided into two categories, i.e. mechanical and chemical. Mechanical treatment methods include power tooling such as grinding, emery paper brushing, stainless steel wire brushing and stainless steel shot blasting. Chemical treatment methods include chemical passivation (phosphoric acid, citric acid, nitric acid) and electro-cleaning (phosphoric acid and citric acid). Potentiodynamic polarization experiments were carried out in 3.5 wt. % NaCl solution at room temp. (20 $^{\circ}C$). The results showed that chemical treatment methods improved the corrosion resistance of stainless steel 304, measured in terms of pitting potential ($E_{pit}$). Corrosion resistance of the specimens was increased in the order of; electro-cleaning > manual passivation > mechanical cleaning. Surface of electro-cleaned specimens was smoother than rest of the surface treatment methods. Chrome content in chemically treated specimens was higher than in mechanically treated specimens as shown by EDX analysis.

Effect of Various Pathological Conditions on Nitric Oxide Level and L-Citrulline Uptake in Motor Neuron-Like (NSC-34) Cell Lines

  • Shashi Gautam;Sana Latif;Young-Sook Kang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.154-161
    • /
    • 2024
  • Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that causes progressive paralysis. L-Citrulline is a nonessential neutral amino acid produced by L-arginine via nitric oxide synthase (NOS). According to previous studies, the pathogenesis of ALS entails glutamate toxicity, oxidative stress, protein misfolding, and neurofilament disruption. In addition, L-citrulline prevents neuronal cell death in brain ischemia; therefore, we investigated the change in the transport of L-citrulline under various pathological conditions in a cell line model of ALS. We examined the uptake of [14C]L-citrulline in wild-type (hSOD1wt/WT) and mutant NSC-34/ SOD1G93A (MT) cell lines. The cell viability was determined via MTT assay. A transport study was performed to determine the uptake of [14C]L-citrulline. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to determine the expression levels of rat large neutral amino acid transported 1 (rLAT1) in ALS cell lines. Nitric oxide (NO) assay was performed using Griess reagent. L-Citrulline had a restorative effect on glutamate induced cell death, and increased [14C]L-citrulline uptake and mRNA levels of the large neutral amino acid transporter (LAT1) in the glutamate-treated ALS disease model (MT). NO levels increased significantly when MT cells were pretreated with glutamate for 24 h and restored by co-treatment with L-citrulline. Co-treatment of MT cells with L-arginine, an NO donor, increased NO levels. NSC-34 cells exposed to high glucose conditions showed a significant increase in [14C]L-citrulline uptake and LAT1 mRNA expression levels, which were restored to normal levels upon co-treatment with unlabeled L-citrulline. In contrast, exposure of the MT cell line to tumor necrosis factor alpha, lipopolysaccharides, and hypertonic condition decreased the uptake significantly which was restored to the normal level by co-treating with unlabeled L-citrulline. L-Citrulline can restore NO levels and cellular uptake in ALS-affected cells with glutamate cytotoxicity, pro-inflammatory cytokines, or other pathological states, suggesting that L-citrulline supplementation in ALS may play a key role in providing neuroprotection.

3-(4′-hydroxyl-3′, 5′-dimethoxyphenyl) Propionic Acid Suppresses NO Production and Elevates GSH Levels in Murine Macrophages

  • Song, Young-Sun;Choi, Chun-Yeon;Suh, Hongsuk;Song, Yeong-Ok
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.270-275
    • /
    • 2004
  • Previous studies have shown that kimchi and kimchi-derived 3-(4'-hydroxyl-3', 5'-dimethoxyphenyl) propionic acid have anti-oxidative and hypolipidemic effects in rats and rabbits. This study was designed to investigate whether chemically synthesized 3-(4'-hydroxyl-3', 5' -dimethoxyphenyl) propionic acid (HDMPPA) may ameliorate oxidative stress through the regulation of nuclear factor KB (NFkB) activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells. Treatment of RAW 264.7 cells with 400 uM of HDMPPA significantly reduced LPS-stimulated nitric oxide (NO) production. Treatments with HDMPPA at 100 uM to 400 uM concentrations significantly elevated glutathione (GSH) level. However, cell viability and thiobarbituric acid-reactive substances (TBARS) concentrations were not affected by the concentrations of HDMPPA used. The specific DNA binding activities of NFKB, a transcription factor which is sensitive to oxidative stress, were not down-regulated by HDMPPA treatments. These results suggest that HDMPPA may have weak anti-oxidative activity against LPS challenge by scavenging NO and stimulating GSH production.

Removal of Interface State Density of SiO2/Si Structure by Nitric Acid Oxidation Method (질산산화법을 이용한 SiO2/Si 구조의 계면결함 제거)

  • Choi, Jaeyoung;Kim, Doyeon;Kim, Woo-Byoung
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.118-123
    • /
    • 2018
  • 5 nm-thick $SiO_2$ layers formed by plasma-enhanced chemical vapor deposition (PECVD) are densified to improve the electrical and interface properties by using nitric acid oxidation of Si (NAOS) method at a low temperature of $121^{\circ}C$. The physical and electrical properties are clearly investigated according to NAOS times and post-metallization annealing (PMA) at $250^{\circ}C$ for 10 min in 5 vol% hydrogen atmosphere. The leakage current density is significantly decreased about three orders of magnitude from $3.110{\times}10^{-5}A/cm^2$ after NAOS 5 hours with PMA treatment, although the $SiO_2$ layers are not changed. These dramatically decreases of leakage current density are resulted from improvement of the interface properties. Concentration of suboxide species ($Si^{1+}$, $Si^{2+}$ and $Si^{3+}$) in $SiO_x$ transition layers as well as the interface state density ($D_{it}$) in $SiO_2/Si$ interface region are critically decreased about 1/3 and one order of magnitude, respectively. The decrease in leakage current density is attributed to improvement of interface properties though chemical method of NAOS with PMA treatment which can perform the oxidation and remove the OH species and dangling bond.

Adsorption Characteristics of Propylamine on Acid Treated Activated Carbon Fiber (산처리된 활성탄소섬유의 Propylamine의 흡착특성)

  • 양범호;김병구;이영택;김시몽;조시형
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.25 no.2
    • /
    • pp.111-119
    • /
    • 2003
  • In this work, Rayon-based activated carbon fiber(KF-1500) was treated by HN $O_3$ and $H_2$S $O_4$ with different conditions. Specific surface areas(SSA, $S_{BET}$) of the treated activated carbon fibers were decreased by acidic treatment but, total surface acidities and surface functional groups were increased. In spite of the decrease of SSA, propylamin(PPA) adsorption and removal ability by activated carbon fiber(ACF) were increased by nitric acid treatment compared with the raw-ACF(KF-1500) and coconut based activated carbon. However, acidic treated activated carbon fibers were available to removal for various amines and contaminants by adsorption.n.

Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Activity by $1,2,3,4,6-Penta-Ο-galloyl-{\beta}-D-glucose$ in Murine Macrophage Cells

  • Lee, Sung-Jin;Lee, Ik-Soo;Mar, Woong-Chon
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.832-839
    • /
    • 2003
  • Activated macrophages express inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and produce excessive amounts of nitric oxide (NO) and prostaglandin E$_2$ (PGE$_2$), which play key roles in the processes of inflammation and carcinogenesis. The root of Paeonia lactiflora Pall., and the root cortex of Paeonia suffruticosa Andr., are important Chinese crude drugs used in many traditional prescriptions. 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (PGG) is a major bioactive constituent of both crude drugs. PGG has been shown to possess potent anti-oxidant, anti-mutagenic, anti-proliferative and anti-invasive effects. In this study, we examined the inhibitory effects of 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (PGG) isolated from the root of Paeonia lactiflora Pall. on the COX-2 and iNOS activity in LPS-activated Raw 264.7 cells, COX-1 in HEL cells. To investigate the structure-activity relationships of gallate and gallic acid for the inhibition of iNOS and COX-2 activity, we also examined (-)-epigallocatechin gallate (EGCG), gallic acid, and gallacetophenone. The results of the present study indicated that PGG, EGCG, and gallacetophenone treatment except gallic acid significantly inhibited LPS-induced NO production in LPS-activated macrophages. All of the four compounds significantly inhibited COX-2 activity in LPS-activated macrophages. Among the four compounds examined, PGG revealed the most potent in both iNOS ($IC_{50}$ = 18 $\mu\textrm{g}/mL$) and COX-2 inhibitory activity (PGE$_2$: $IC_{50}$ = 8 $\mu\textrm{g}/mL$ and PGD$_2$: $IC_{50}$ = 12 $\mu\textrm{g}/mL$), respectively. Although further studies are needed to elucidate the molecular mechanisms and structure-activity relationship by which PGG exerts its inhibitory actions, our results suggest that PGG might be a candidate for developing anti-inflammatory and cancer chemopreventive agents.

A Pharmacological Advantage of Ursodeoxycholic Acid in Cytoprotection in Primary Rat Microglia

  • Joo, Seong-Soo;Hwang, Kwang-Woo;Lee, Do-Ik
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.40-45
    • /
    • 2005
  • Ursodeoxycholic acid (UDCA) has long been used as an adjuvant or first choice of therapy for liver disease. Commonly, UDCA has been reported to play a role in improving hyperbilirubinemia and disorder of bromsulphalein. More commonly, UDCA has been used in reducing the rate of cholesterol level in bile juice that can cause cholesterol stone. The effects on the promotion of bile acid release that leads an excretion of toxic materials and wastes produced in liver cells as well as various arrays of liver disease such as hepatitis. Other than already reported in clinical use, immunosuppressive effect has been studied, especially in transplantation. In the study, we hypothesized that UDCA might have a certain role in anti-inflammation through a preventive effect of pro-inflammatory potentials in the brain macrophages, microglia. We found that the treatment of $200\;{\mu}g/ml$ UDCA effectively suppressed the pro-inflammatory mediators (i.e. nitric oxide and interleukin-$1{\beta}$) in rat microglia compared to comparators. Interestingly, RT-PCR analysis suggested that UDCA strongly attenuated the expression of $IL-1{\beta}$ that was comparable with cyclosporine A at 48 h incubation. Conclusively, we found that UDCA may playa cytoprotective role in microglial cells through direct or indirect pathways by scavenging a toxic compound or an anti-inflammatory effect, which are known as major causes of neurodegenerative diseases.

Anti-inflammatory Effects of Recombinant Arginine Deiminase Originating from Lactococcus lactis ssp. lactis ATCC 7962

  • Kim, Jong-Eun;Hur, Haeng-Jeon;Lee, Ki-Won;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1491-1497
    • /
    • 2007
  • Arginine deiminase (ADI, E.C. 3.5.3.6), one of the arginine deprivation enzymes, exhibits anticarcinogenic activities. The present study investigated the anti-inflammatory activities of the purified recombinant ADI originating from Lactococcus lactis ssp. lactis ATCC7962 (LADI). LADI dose-dependently inhibited lipopolysaccharide (LPS)-induced upregulation of inducible nitric oxide synthase and the production of nitric oxide in RAW 264.7 murine macrophages. The induction of cyclooxygenase-2 expression and subsequent production of prostaglandin $E_2$ by LPS was also attenuated by LADI treatment. Moreover, LADI inhibited the production of interleukin-6 in LPS-stimulated RAW 264.7 macrophages. These results indicate that LADI exerts anti-inflammatory effects, which may in part explain its chemopreventive potential.

Inhibition of Metastatic Lung Cancer in C57BL/6 Mice by Marine Mangrove Rhizophora apiculata

  • Prabhu, V. Vinod;Guruvayoorappan, C.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1833-1840
    • /
    • 2013
  • Metastasis is one of the hallmarks of malignant neoplasms and is the leading cause of death in many cancer patients. A major challenge in cancer treatment is to find better ways to specifically target tumor metastasis. In this study, the anti-metastatic potential of the methanolic extract of Rhizophora apiculata (R.apiculata) was evaluated using the B16F-10 melanoma induced lung metastasis model in C57BL/6 mice. Metastasis was induced in C57BL/6 mice by injecting highly metastatic B16F-10 melanoma cells through the lateral tail vein. Simultaneous treatment with R.apiculata extract (10 mg/kg b.wt (intraperitoneal) significantly (p<0.01) inhibited pulmonary tumor nodule formation (41.1 %) and also increased the life span (survival rate) 107.3 % of metastatic tumor bearing animals. The administration of R.apiculata extract significantly (p<0.01) reduced biochemical parameters such as lung collagen hydroxyproline, hexosamine, uronic acid content, serum nitric oxide (NO), ${\gamma}$-glutamyl transpeptidase (GGT) and sialic acid levels when compared to metastasis controls. These results correlated with lung histopathology analysis of R.apiculata extract treated mice showing reduction in lung metastasis and tumor masses. Taken together, our findings support that R.apiculata extract could be used as a potential anti-metastasis agent against lung cancer.