• Title/Summary/Keyword: nisin

Search Result 68, Processing Time 0.032 seconds

Screening of Lactobacilli Derived from Chicken Feces and Partial Characterization of Lactobacillus acidophilus A12 as Animal Probiotics

  • Lee, Na-Kyoung;Yun, Cheol-Won;Kim, Seung-Wook;Chang, Hyo-Ihl;Kang, Chang-Won;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.338-342
    • /
    • 2008
  • This study was performed to screen and select Lactobacillus strains from chicken feces for probiotic use in animals. Of these strains, strain AU had the highest immunostimulatory effect. Therefore, strain A12 was characterized as a potential probiotic. Strain A12 was tentatively identified as Lactobacillus acidophilus A12, using the API 50 CHL kit based on a 99.9% homology. L. acidophilus A12 was highly resistant to artificial gastric juice (pH 2.5) and bile acid (oxgall). Based on results from the API ZYM kit, leucine arylamidase, crystine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase, ${\beta}$-glucosidase, and N-acetyl-${\beta}$-glucosamidase were produced by strain A12. L. acidophilus A12 showed resistance to several antibiotics (nisin, gentamicin, and erythromycin). The amount of interleukin $(IL)-1{\alpha}$ in $20{\times}$ concentrated supernatant from L. acidophilus A12 was approximately 156pg/ml. With regard to antioxidant activity, L. acidophilus A12 supernatant showed 60.6% DPPH radical scavenging activity. These results demonstrate the potential use of L. acidophilus A12 as health-promoting probiotics.

Reduction of Allergic Potential of Meju by Three Step Fermentation (3단계 발효에 의한 콩 알레르기성의 저하)

  • Ryu, Chung-Ho;Lee, Jeong-Ok;Son, Dae-Yeul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1066-1071
    • /
    • 2012
  • In this study we investigated the change in antigenicity and allergenicity of Meju, a traditional Korean soybean product, by fermentation via 3 different microorganisms. The steamed soybeans were fermented with Lactococcus lactis subsp. lactis and/or Aspergillus oryzae and/or Bacillus subtilis. Proteins in soybean were degraded after fermentation. Antigenicity or allergenicity were analysed by immunoblotting and ELISA using soybean protein-specific polyclonal antibodies or soybean allergic patient sera. The best degradation was achieved by three step fermentation using nisin-producing Lactococcus lactis subsp. lactis IFO12007, A. oryzae and B. subtilis. Allergenicity and antigenicity were also starkly reduced after three step fermentation. The three-step fermentation method developed in our lab suggests an excellent alternative to reduce the allergenicity of soybeans.

Screening of Natural Preservatives to Inhibit Kimchi Fermentation (김치의 선도유지를 위한 천연보존제의 탐색)

  • Moon, Kwang-Deog;Byun, Jung-A;Kim, Seok-Joong;Han, Dae-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.257-263
    • /
    • 1995
  • As a primary step to develop natural preservative for extending the shelf-life of kimchi, the effect of 102 edible plants, 21 antimicrobial agents and related compounds on kimchi fermentation was studied. Among 42 oriental medicinal plants tested, Baical skullcap and Assam indigo were found to be highly effective for maintaining the fresh state of kimchi. Although Bugbane, Red mangolia, Bushy sophora, Szechuan pepper, Chinese quince and Scisandre significantly inhibit the growth of Lactobacilli, their effect was not high enough to be used as raw materials for kimchi preservative. When the effect of 32 herbs and spices was tested, peppermint, cinnamon, lemon balm, clove, hop, rosemary, sage, horseradish and thyme showed high antimicrobial activity against kimchi microorganisms. Among them, the effect of clove ranked top. When it was added to fresh kimchi, initial cfu value ($2.4{\times}10^{6}cfu/g$) changed little even after 2 day's fermentation ($2.6{\times}10^{6}cfu/g$). Sensory test was not a good criteria to evaluate the effect of herbs and spices, since their highly specific flavors affected the taste of kimchies. Twenty eight fruits, vegetables and related plants were tested, but only leaves of pine tree, persimmon and oak leaves showed a significant bactericidal effect, finally contributing to the storage of kimchi. In addition, when 21 natural preservatives and other compounds were added individually to fresh kimchi, nisin and caffeic acid could inhibit fermentation.

  • PDF

Genetic Organization of ascB-dapE Internalin Cluster Serves as a Potential Marker for Listeria monocytogenes Sublineages IIA, IIB, and IIC

  • Chen, Jianshun;Fang, Chun;Zhu, Ningyu;Lv, Yonghui;Cheng, Changyong;Bei, Yijiang;Zheng, Tianlun;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.575-584
    • /
    • 2012
  • Listeria monocytogenes is an important foodborne pathogen that comprises four genetic lineages: I, II, III, and IV. Of these, lineage II is frequently recovered from foods and environments and responsible for the increasing incidence of human listeriosis. In this study, the phylogenetic structure of lineage II was determined through sequencing analysis of the ascB-dapE internalin cluster. Fifteen sequence types proposed by multilocus sequence typing based on nine housekeeping genes were grouped into three distinct sublineages, IIA, IIB, and IIC. Organization of the ascB-dapE internalin cluster could serve as a molecular marker for these sublineages, with inlGHE, inlGC2DE, and inlC2DE for IIA, IIB, and IIC, respectively. These sublineages displayed specific genetic and phenotypic characteristics. IIA and IIC showed a higher frequency of recombination (${\rho}/{\theta}$). However, recombination events had greater effect (r/m) on IIB, leading to its high nucleotide diversity. Moreover, IIA and IIB harbored a wider range of internalin and stress-response genes, and possessed higher nisin tolerance, whereas IIC contained the largest portion of low-virulent strains owing to premature stop codons in inlA. The results of this study indicate that IIA, IIB, and IIC might occupy different ecological niches, and IIB might have a better adaptation to a broad range of environmental niches.

Expression of manB Gene from Escherichia coli in Lactococcus lactis and Characterization of Its Bifunctional Enzyme, Phosphomannomutase

  • Li, Ling;Kim, Seul Ah;Fang, Ruosi;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1293-1298
    • /
    • 2018
  • Phosphomannomutase (ManB) converts mannose-6-phosphate (M-6-P) to mannose-1-phosphate (M-1-P), which is a key metabolic precursor for the production of GDP-D-mannose used for production of glycoconjugates and post-translational modification of proteins. The aim of this study was to express the manB gene from Escherichia coli in Lactococcus lactis subsp. cremoris NZ9000 and to characterize the encoded enzyme. The manB gene from E. coli K12, of 1,371 bp and encoding 457 amino acids (52 kDa), was cloned and overexpressed in L. lactis NZ9000 using the nisin-controlled expression system. The enzyme was purified by Ni-NTA column chromatography and exhibited a specific activity of 5.34 units/mg, significantly higher than that of other previously reported ManB enzymes. The pH and temperature optima were 8.0 and $50^{\circ}C$, respectively. Interestingly, the ManB used in this study had two substrate specificity for both mannose-1-phosphate and glucose-1-phosphate, and the specific activity for glucose-1-phosphate was 3.76 units/mg showing 70% relative activity to that of mannose-1-phosphate. This is the first study on heterologous expression and characterization of ManB in lactic acid bacteria. The ManB expression system constructed in this study canbe used to synthesize rare sugars or glycoconjugates.

Characterization of Bacteriocin from Bacillus subtilis cx 1 (Bacillus subtilis cx1이 생산하는 박테리오신의 특성)

  • 김수인;장지윤;김인철;장해춘
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.1
    • /
    • pp.50-55
    • /
    • 2001
  • A new bacteriocin produced by Bacillus subtilis cx1, was partially purified and characterized. The bactericoin from B. subtilis cx1 was stable in the range of pH 2.5-9.5. B. subtilis csx1 retained its antimicrobial activity to long-term exposure at $-20^{\circ}C$ and $-70^{\circ}C$. However, B. subtilis cx1 was inactivated completely within 15 min over $60^{\circ}C$ and lost 50% of its antimicrobial activity within 15 min at $50^{\circ}C$, B. subtilis cx1 was inactivated by protease, trypsin, proteinase K and carboxypeptidase, which indi-cates its protein nature. Direct detection of the antimicrobial activity on Tricine -SDS-PAGE suggested an apparent molecular mass of about 9,500 dalton.

  • PDF

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Distribution and Biodiversity of Lactic Acid Bacteria Having Bacteriocin-like Activity from Fresh Fruits and Vegetables (신선 과채류에 존재하는 박테리오신 유사 활성을 지니는 유산균의 분포와 다양성)

  • Park, Young-Seo;Jang, Jae Kweon;Choi, Young Jin;Chung, Myong-Soo;Park, Hoon;Shim, Kun-Sub
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.64-69
    • /
    • 2009
  • From the 25 fresh fruits and vegetable products, 1,250 isolates grown on MRS agar media were screened for the inhibitory activity on the growth of Escherichia coli 0157:H7, Listeria monocytogenes, and Bacillus cereus as well as Lactobacillus plantarum, L. casei, and Lactococcus lactis subsp. lactis. Among them, 607 isolates (49% of total isolates) from 23 different foods produced growth inhibitory activity on the E. coli 0157:H7, L. monocytogenes, or B. cereus. When these isolates were screened for the inhibitory activity on the growth of L. plantarum, L. casei, and Lactococcus lactis subsp., 24 isolates (3% of total isolates) from 7 food samples showed bacteriocin-like activity. These isolates had typical physiological characteristics of lactic acid bacteria, which indicated these isolates were strains of lactic acid bacteria. The inhibitor from 3 out of 24 revealed as nicin. From the RAPD-PCR profiles, 24 strains was classified and it was also indicated that most of the strains isolated from same produce showed similar phylogenetic profile.