• Title/Summary/Keyword: niobium

Search Result 193, Processing Time 0.028 seconds

A Technical Trend of Manufacturing and Materials of Nozzle Extension for Thrust Chamber of Liquid Rocket (액체로켓 연소기 노즐확장부 제작 및 재료 기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.97-103
    • /
    • 2012
  • The combustion chamber and nozzle of a liquid rocket engine should be protected from the high temperature combustion gas generated by the chamber. An upper-stage nozzle extension has a large expansion ratio, therefore, The light-weight refractory materials have been used since the weight impact on the launcher performance is crucial. Gas film cooling method was used before, but was not applicable nowadays. Ablative cooling method and radiative cooling method with niobium alloy, Ni-based superalloy and ceramic based composite have been used to this day.

Synthesis and Characterization of KTiNbO5 Nano-particles by Novel Polymerizable Complex Method

  • Wang, Ning-Ning;Lan, Yun-Xiang;He, Jie;Dong, Rui;Hu, Jin-Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2737-2740
    • /
    • 2013
  • The layered $KTiNbO_5$ was successfully synthesized with titanium(IV) isopropoxide and niobium oxalate by a novel polymerized complex (PC) method. The morphology and structure of the as-prepared sample was characterized by means of High-Resolution Transmission Electron Microscope, powder X-ray diffraction, and Laser Raman Spectroscopy. The spectral response characteristic was recorded by using UV-vis Diffuse Reflectance Spectroscopy. Results show that $KTiNbO_5$ as-prepared by PC method presents an uniform morphology of nano-particles, the mean particle sizes is ca. 28 nm corresponding to the (002), and the crystal structure can be well indexed to the orthorhombic phase. The sample as-prepared by PC method has higher band gap energy than that of the sample prepared by a solid-state reaction method due to the quantum size effect.

Effects of Niobium Addition on the Corrosion Behavior of Ti Alloys in NaCl Solution (NaCl 용액에서 Nb 첨가가 Ti 합금의 부식 거동에 미치는 영향)

  • Kim, E.S.;Kim, W.G.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • In this study, the effect of niobium addition on the passivation behavior of Ti alloys in NaCl solution was investigated using various electrochemical methods. An ${\alpha}$-phase in Ti alloy was transformed into a ${\beta}$-phase and martensite structure decreased as Nb content increased. The corrosion and passivation current density($+300mV_{SCE}$) decreased as Nb content increased, and thereby a stable passive film was formed on the Ti alloy. Potential of Ti-xNb alloy in the passive region increased, whereas, current density decreased with time from results of potentiostatic and galvanostatic tests. Also, the corrosion morphology showed the smaller pits as Nb content increased. Consequently, Ti alloy contained high Nb content showed a good resistance to pitting corrosion in 0.9% NaCl solution.

Effect of Hot Isostatic Pressing on the Microstructure and Properties of Kinetic Sprayed Nb Coating Material (Kinetic Spray 공정으로 제조된 Nb 코팅 소재의 미세조직 및 물성에 미치는 열간 등압 성형(HIP)의 영향)

  • Lee, Ji-Hye;Yang, Sangsun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Niobium is one of the most important and rarest metals, and is used in the electronic and energy industries. However, it's extremely high melting point and oxygen affinity limits the manufacture of Nb coating materials. Here, a Nb coating material is manufactured using a kinetic spray process followed by hot isotactic pressing to improve its properties. OM (optical microscope), XRD (X-ray diffraction), SEM (scanning electron microscopy), and Vickers hardness and EPMA (electron probe micro analyzer) tests are employed to investigate the macroscopic properties of the manufactured Nb materials. The powder used to manufacture the material has angular-shaped particles with an average particle size of $23.8{\mu}m$. The porosity and hardness of the manufactured Nb material are 0.18% and 221 Hv, respectively. Additional HIP is applied to the manufactured Nb material for 4 h under an Ar atmosphere after which the porosity decreases to 0.08% and the hardness increases to 253 Hv. Phase analysis after the HIP shows the presence of only pure Nb. The study also discusses the possibility of using the manufactured Nb material as a sputtering target.

A Technical Trend of Manufacturing and Materials of Nozzle Extension for Thrust Chamber (연소기 노즐확장부 제작 및 재료 기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.505-509
    • /
    • 2011
  • The combustion chamber and nozzle of a liquid rocket engine should be protected from the high temperature combustion gas generated by the chamber. An upper-stage nozzle extension has a large expansion ratio, therefore, The light-weight refractory materials have been used since the weight impact on the launcher performance is crucial. Gas film cooling and ablative cooling methods were used before, but were not applicable nowadays. Radiative cooling method with niobium alloy, Ni-based superalloy and ceramic based composite has been used to this day.

  • PDF

고체원소 이온주입 공정으로 제조된 NbN 박막의 내마모 특성 평가

  • Park, Won-Ung;Choe, Jin-Yeong;Jeon, Jun-Hong;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.62-62
    • /
    • 2010
  • 인공관절은 노인성 질환이나 자가 면역질환, 신체적인 외상 등에 의한 관절의 손상 부위를 대체하기 위해 고안된 관절의 인공대용물로써 최근 인구의 고령화와 질병, 사고의 증가에 따라 그 수요가 급격히 증가하는 추세를 보이고 있다. 인공관절의 소재로는 현재 metal-on-polymer(MOP) 소재가 가장 많이 사용되고 있는데, metal 소재로서는 Co-Cr계 합금이, polymer 소재로서는 초고분자량 폴리에틸렌 (ultra high molecular weight polyethylene) 이 주로 사용되고 있다. MOP 소재의 경우 충격흡수의 장점이 있는 반면 wear debris에 의한 골용해로 인해 관절이 느슨해지는 문제점이 발생하여 재시술의 주요 원인이 되고 있다. 또한 metal 소재로 주로 사용되고 있는 Co-Cr계 합금의 경우 인공관절의 마모, 부식 현상에 의해 Co, Cr등이 체내에 용출되어 세포독성의 문제를 일으킬 수 있다는 단점을 가지고 있다. 본 연구에서는 고체원소 이온주입 기술을 이용하여 316L stainless steel 기판에 niobium을 이온 주입 한 후 niobium nitride (NbN) 박막을 증착하여 counterpart 소재인 초고분자량 폴리에틸렌(UHMWPE) 의 마모를 줄이는 실험을 진행하였다. Pin-on-disk tribometer를 통해 마모 테스트를 진행하여 NbN 박막의 내마모특성을 평가하였으며, 박막의 결정구조 및 화학적 특성을 평가하기 위해 XRD, AES 분석을 수행하였다. 또한 박막의 경도와 표면조도를 측정하기 위해 micro hardness tester, AFM을 이용하였다.

  • PDF

Influence of Nb Addition and Austenitizing Temperature on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Nb 첨가와 오스테나이트화 온도의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.577-582
    • /
    • 2015
  • The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of $M_{23}(C,B)_6$ along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of $3^{\circ}C/s$, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.