Browse > Article
http://dx.doi.org/10.14773/cst.2013.12.1.034

Effects of Niobium Addition on the Corrosion Behavior of Ti Alloys in NaCl Solution  

Kim, E.S. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
Kim, W.G. (Department of Dental Technology, Daegu Health College)
Choe, H.C. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
Publication Information
Corrosion Science and Technology / v.12, no.1, 2013 , pp. 34-39 More about this Journal
Abstract
In this study, the effect of niobium addition on the passivation behavior of Ti alloys in NaCl solution was investigated using various electrochemical methods. An ${\alpha}$-phase in Ti alloy was transformed into a ${\beta}$-phase and martensite structure decreased as Nb content increased. The corrosion and passivation current density($+300mV_{SCE}$) decreased as Nb content increased, and thereby a stable passive film was formed on the Ti alloy. Potential of Ti-xNb alloy in the passive region increased, whereas, current density decreased with time from results of potentiostatic and galvanostatic tests. Also, the corrosion morphology showed the smaller pits as Nb content increased. Consequently, Ti alloy contained high Nb content showed a good resistance to pitting corrosion in 0.9% NaCl solution.
Keywords
Ti-xNb alloy; passivation; potentiostatic; galvanostatic; corrosion morphology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Long, and H. J. Rack, Biomaterials, 19, 1621 (1998).   DOI   ScienceOn
2 M. Niinomi, Mater. Sci. Eng., A 243, 231 (1998).   DOI   ScienceOn
3 D. Q. Martins, M. E. P. Souza, D. C. Andrade, C. M. A. Freire, and R. Caram, J. Alloys Compd., 478, 111 (2009).   DOI   ScienceOn
4 L. J. Xu, Y. Y. Chen, Z. G. Liu, and F. T. Kong, J. Alloys Compd., 453, 320 (2006).
5 A. Choubey, R. balasubramaniam, and B. Basu, J. Alloys Compd., 381, 288 (2004).   DOI   ScienceOn
6 Y. Mantai, and M. Tajima, Mater. Sci. Eng., 43-440A, 315 (2006).
7 R. G. Zhang, and V. L. Acoff, Mater. Sci. Eng., 463A, 67 (2007).
8 K. Wan, L. Gustavson, J. Dumbleton, Beta Titanium in 1990s, The Minerals and Materials Society, Warrandale, p. 49 (1993).
9 H. S. Kim, S. H. Lim, I. D. Yeo, and W. Y. Kim, Mater. Sci. Eng., A 449, 322 (2007).
10 J. J. Park, H. C. Choe, and Y. M. Ko, Mater. Sci. Forum, 539-543, 1270 (2007).
11 A. Majorell, S. Srivatsa, and R. C. Picu, Mater. Sci. Eng., A 326, 297 (2002).   DOI   ScienceOn
12 S. H. Jang, H. C. Choe, Y. M. Ko, and W. A. Brantley, Thin Solid Films, 517, 5038 (2009).   DOI   ScienceOn
13 H. C. Choe, Y. M. Ko, and W. A. Brantley, NSTI-Nanotech, 2, 744 (2007).   DOI   ScienceOn
14 A. Cremasco, W. R. Osorio, C. M. A. Freire, A. Garcia, and R. Caram, Electrochim. Acta, 53, 4867 (2008).   DOI   ScienceOn
15 S. A. souza, R. B. Manicardi, P. L. Ferrandini, C. R. M. Afonso, A. J. Ramirez, and R. Caram, J. Alloy Compd., 504, 330 (2010).   DOI   ScienceOn
16 A. I. Karayan, S. W. Park, and K. M. Lee, Mater. Lett., 62, 1843 (2008).   DOI   ScienceOn
17 H. C. Choe, Y. M. Ko, and H. O. Park, Met. Mater. Int., 12, 365 (2006).   DOI   ScienceOn
18 S. Frangini, and N.De. Cristofaro, Corros. Sci., 45, 2769 (2003).   DOI   ScienceOn