• Title/Summary/Keyword: nickel oxide

Search Result 353, Processing Time 0.026 seconds

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

Lithium-silicate coating on Lithium Nickel Manganese Oxide (LiNi0.7Mn0.3O2) with a Layered Structure

  • Kim, Dong-jin;Yoon, Da-ye;Kim, Woo-byoung;Lee, Jae-won
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.87-95
    • /
    • 2017
  • Lithium silicate, a lithium-ion conducting ceramic, is coated on a layer-structured lithium nickel manganese oxide ($LiNi_{0.7}Mn_{0.3}O_2$). Residual lithium compounds ($Li_2CO_3$ and LiOH) on the surface of the cathode material and $SiO_2$ derived from tetraethylorthosilicate are used as lithium and silicon sources, respectively. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive spectroscopy analyses show that lithium silicate is coated uniformly on the cathode particles. Charge and discharge tests of the samples show that the coating can enhance the rate capability and cycle life performance. The improvements are attributed to the reduced interfacial resistance originating from suppression of solid-electrolyte interface (SEI) formation and dissolution of Ni and Mn due to the coating. An X-ray photoelectron spectroscopy study of the cycled electrodes shows that nickel oxide and manganese oxide particles are formed on the surface of the electrode and that greater decomposition of the electrolyte occurs for the bare sample, which confirms the assumption that SEI formation and Ni and Mn dissolution can be reduced using the coating process.

P-I-N 역구조 페로브스카이트 태양전지 응용을 위한 Nickel oxide 홀전달층의 열처리 온도 연구 (Annealing Temperature of Nickel Oxide Hole Transport Layer for p-i-n Inverted Perovskite Solar Cells)

  • 김기성;김미정;김효정;양정엽
    • Current Photovoltaic Research
    • /
    • 제11권4호
    • /
    • pp.103-107
    • /
    • 2023
  • A Nickel oxide (NiOx) thin films were prepared via sol-gel process on a transparent conductive oxide glass substrate. The NiOx thin films were spin-coated in ambient air and subsequently annealed for 30 minutes at temperatures ranging from 150℃ to 450℃. The structural and optical characteristics of the NiOx thin films annealed at various temperatures were measured using X-ray diffraction, field emission scanning electron microscopy, and ultraviolet-visible spectroscopy. After optimizing the NiOx coating conditions, perovskite solar cells were fabricated with p-i-n inverted structure, and its photovoltaic performance was evaluated. NiOx thin films annealed at 350℃ exhibited the most favorable characteristics as a hole transport layer, resulting in the highest power conversion efficiency of 17.88 % when fabricating inverted perovskite solar cells using this film.

ITO(Indium Tin Oxide) 전극상의 전기화학적 Nickel 박막형성 (Growth of Electrochemical Nickel Thin Film on ITO(Indium Tin Oxide) Electrode)

  • 김우성;성정섭
    • 한국안광학회지
    • /
    • 제7권2호
    • /
    • pp.155-161
    • /
    • 2002
  • 전도성 혹은 비전도성 지지체에서 전기변색이 가능한 수 nm에서 수액 nm 두께의 금속 니켈 박막 형성에 대한 연구를 수행하였다. 광학렌즈나 혹은 LCD에 사용되는 ITO, 실리콘 웨이퍼에 박막 형성에 대한 연구는 다양한 두께의 니켈 박막은 자체로서의 응용 가능성 뿐 아니라, 광전기화학 소자, 특히 선글라스로 대변되는 변색 소자에의 응용 가능성이 아주 크다. 이러한 소자들은 나노 기술 응용과 양자점의 응용 등으로 경박단소형의 렌즈나 전지, 유리 그리고 태양 선지 등에 응용이 가능하다. 전기화학적으로 니켈 금속을 ITO 유리위에 코팅한 후, AFM, XRD을 이용하여 미세구조를 확인하고, 순환전압전류법, 시간대전류법, 임피던스를 이용하여 이들의 전기화학적 박막 특성을 조사하였다.

  • PDF

에너제틱 응용을 위한 Ni코팅된 Al분말소재 제조 및 산화거동 (Fabrication and Oxidation Behaviors of Nickel-coated Aluminum Powders for Energetic Applications)

  • 김경태;우재열;유지훈;이혜문;임태수;최윤정;김창기
    • 한국입자에어로졸학회지
    • /
    • 제10권4호
    • /
    • pp.177-182
    • /
    • 2014
  • In this study, nickel-coated aluminum (Ni/Al) powders were synthesized for the utilization of energetic applications. Oxide materials present at the surface of Al powders of $45{\mu}m$ in averaged size were removed by using sodium hydroxide(NaOH) solution which is used for controlling pH. Nickel material is coated into the surface of oxide-removed Al powders by electroless-plating process. The microstructure of fabricated Ni/Al powders shows that nickel layers with a few hundreds nm were very homogeneously formed onto the surface of Al powders. The oxidation behavior of Ni/Al exihibit somewhat faster oxidation rate than that of pure Al with surface oxidation. Also, the higher exothermic reaction was observed from the Ni/Al powders. From the result of this, nickel coating is very promising method to obtain highly reactive and safe Al powders for energetic applications.

Synthesis of Nickel Nanoparticles using Electron Beam Irradiation

  • Lee, Seung Jun;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.241-245
    • /
    • 2015
  • A study on the preparation of nickel oxide nanoparticles using electron beam irradiation is described. Nickel nanoparticles were synthesized with nickel chloride hexahydrate as a metal precursor and different sodium hydroxide concentrations using electron beam irradiation. The effects of sodium hydroxide concentration and electron beam absorbed doses were investigated. The samples were synthesized at different sodium hydroxide concentrations and with absorbed doses of 100 to 500 kGy at room temperature. Synthesized nanoparticles were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer (VSM). The nanoparticle morphologies seemed to be non-spherical and aggregated. The 1:1 molar ratio of nickel chloride hexahydrate and sodium hydroxide showed a higher purity and saturation magnetization value of 13.0 emu/g. The electron beam absorbed dose was increased with increasing nickel nanoparticle nucleation.

Experimental Observations for Anode Optimization of Oxide Reduction Equipment

  • David Horvath;James King;Robert Hoover;Steve Warmann;Ken Marsden;Dalsung Yoon;Steven Herrmann
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.383-398
    • /
    • 2022
  • The electrochemical behavior was investigated during the electrolysis of nickel oxide in LiCl-Li2O salt mixture at 650℃ by changing several components. The focus of this work is to improve anode design and shroud design to increase current densities. The tested components were ceramic anode shroud porosity, porosity size, anode geometry, anode material, and metallic porous anode shroud. The goal of these experiments was to optimize and improve the reduction process. The highest contributors to higher current densities were anode shroud porosity and anode geometry.

비정질 실리콘 희생층을 이용한 니켈산화막 볼로미터 제작 (Fabrication of Nickel Oxide Film Microbolometer Using Amorphous Silicon Sacrificial Layer)

  • 김지현;방진배;이정희;이용수
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.379-384
    • /
    • 2015
  • An infrared image sensor is a core device in a thermal imaging system. The fabrication method of a focal plane array (FPA) is a key technology for a high resolution infrared image sensor. Each pixels in the FPA have $Si_3N_4/SiO_2$ membranes including legs to deposit bolometric materials and electrodes on Si readout circuits (ROIC). Instead of polyimide used to form a sacrificial layer, the feasibility of an amorphous silicon (${\alpha}-Si$) was verified experimentally in a $8{\times}8$ micro-bolometer array with a $50{\mu}m$ pitch. The elimination of the polyimide sacrificial layer hardened by a following plasma assisted deposition process is sometimes far from perfect, and thus requires longer plasma ashing times leading to the deformation of the membrane and leg. Since the amorphous Si could be removed in $XeF_2$ gas at room temperature, however, the fabricated micro-bolomertic structure was not damaged seriously. A radio frequency (RF) sputtered nickel oxide film was grown on a $Si_3N_4/SiO_2$ membrane fabricated using a low stress silicon nitride (LSSiN) technology with a LPCVD system. The deformation of the membrane was effectively reduced by a combining the ${\alpha}-Si$ and LSSiN process for a nickel oxide micro-bolometer.

Effect of Nozzle Tip Size on the Fabrication of Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Kim, Donghee;Yu, Jaekeun
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.489-494
    • /
    • 2013
  • In this study, by using nickel chloride solution as a raw material, a nano-sized nickel oxide powder with an average particle size below 50 nm was produced by spray pyrolysis reaction. A spray pyrolysis system was specially designed and built for this study. The influence of nozzle tip size on the properties of the produced powder was examined. When the nozzle tip size was 1 mm, the particle size distribution was more uniform than when other nozzle tip sizes were used and the average particle size of the powder was about 15 nm. When the nozzle tip size increases to 2 mm, the average particle size increases to roughly 20 nm, and the particle size distribution becomes more uneven. When the tip size increases to 3 mm, particles with an average size of 25 nm and equal to or less than 10 nm coexist and the particle size distribution becomes much more uneven. When the tip size increases to 5 mm, large particles with average size of 50 nm partially exist, mostly consisting of minute particles with average sizes in the range of 15~25 nm. When the tip size increases from 1 mm to 2 mm, the XRD peak intensities greatly increase while the specific surface area decreases. When the tip size increases to 3 mm, the XRD peak intensities decrease while the specific surface area increases. When the tip size increases to 5 mm, the XRD peak intensities increase again while the specific surface area decreases.

Fabrication of the Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Yu, Jae-Keun;NamGoong, Hyun;Kim, Dong-Hee
    • 한국재료학회지
    • /
    • 제22권8호
    • /
    • pp.426-432
    • /
    • 2012
  • This study involves using nickel chloride solution as a raw material to produce nano-sized nickel oxide powder with average particle size below 50 nm by the spray pyrolysis reaction. The influence of the inflow speed of raw material solution on the properties of the produced powder is examined. When the inflow speed of the raw material solution is at 2 ml/min., the average particle size of the powder is 15~25 nm and the particle size distribution is relatively uniform. When the inflow speed of the solution increases to 10 ml/min., the average particle size of the powder increases to about 25 nm and the particle size distribution becomes much more uneven. When the inflow speed of the solution increases to 20 ml/min., the average particle size of the powder increases in comparison to the case in which the inflow speed of the solution was 10 ml/min. However, the particle size distribution is very uneven, showing various particle size distributions ranging from 10 nm to 70 nm. When the inflow speed of solution increases to 50 ml/min., the average particle size of the powder decreases in comparison to the case in which the inflow speed was 20 ml/min., and the particle size distribution shows more evenness. As the inflow speed of the solution increases from 2 ml/min. to 20 ml/min., the XRD peak intensities gradually increase, while the specific surface area decreases. When the inflow speed of solution increases to 50 ml/min., the XRD peak intensities rather decrease, while the specific surface area increases.