• Title/Summary/Keyword: nickel oxide

Search Result 354, Processing Time 0.024 seconds

Characterization of Nickel Oxide Nanofibers Obtained by Electrospinning

  • Park, Juyun;Kang, Yong-Cheol;Koh, Sung Wi
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.14-18
    • /
    • 2018
  • Nickel oxide nanofibers were synthesized by electrospinning with nickel(II) acetate tetrahydrate and polyvinylpyrrolidone and calcination process. The nanofiber shape was easily detected from the nanofibers with high Ni contents after calcined at $600^{\circ}C$ and the crystal structure of layer-by-layer growth was observed from SEM images at $900^{\circ}C$. XRD and TEM results showed metallic Ni and NiO structure were formed at nanofibers obtained at 600 and $900^{\circ}C$ and the crystallite size was calculated from 25 to 55 nm. The surface of nanofibers was fully oxidized from the deconvoluted Cu 2p and O 1s XPS spectra.

Electrochemical Oxidation of Ethanol at $RuO_2-Modified$ Nickel Electrode in Alkaline Media Studied by Electrochemical Impedance Spectroscopy

  • Kim Jae-Woo;Park Su-Moon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.76-80
    • /
    • 2000
  • Electrochemical oxidation of ethanol has been studied at nickel and $RuO_2-modified$ nickel electrodes in 1 M KOH using electrochemical impedance spectroscopy. Equivalent circuits have been worked out from simulation of impedance data to model oxidation of ethanol as well as the passivation of the electrode. The charge-transfer resistances for oxidation of these electrodes became smaller in the presence of ethanol than in its absence. The nickel substrate facilitated ethanol oxidation at $RuO_2-modified$ nickel electrodes. We also describe the Performance of nanosized electrocatalysts of the same composition in comparison to those of the bulk electrodes. The nanosized electrodes were obtained by electrode-positing the alloy from complexed form of these metal ions with fourth and fifth generation polyamidoamine dendrimers.

Synthesis and Characterization of Nickel Nanowires by an Anodic Aluminum Oxide Template-Based Electrodeposition (양극산화 알루미나 주형 기반의 전해 증착법을 이용한 니켈 나노선의 합성 및 특성 연구)

  • Lim, Hyo-Ryoung;Choa, Yong-Ho;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.216-220
    • /
    • 2015
  • Vertically oriented nickel nanowire arrays with a different diameter and length are synthesized in porous anodic aluminium oxide templates by an electrodeposition method. The pore diameters of the templates are adjusted by controlling the anodization conditions and then they are utilized as templates to grow nickel nanowire arrays. The nickel nanowires have the average diameters of approximately 25 and 260 nm and the crystal structure, morphology and microstructure of the nanowires are systematically investigated using XRD, FE-SEM and TEM analysis. The nickel nanowire arrays show a magnetic anisotropy with the easy axis parallel to the nanowires and the coercivity and remanence enhance with decreasing a wire diameter and increasing a wire length.

Determination of Surface Diffusivities of Oxides by the Combined Sintering (소결에 의한 산화물촉매의 표면확산계수의 측정)

  • 문세기;유경옥;김형진
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.2
    • /
    • pp.73-77
    • /
    • 1977
  • The surface diffusion coefficients for nickel, nickel oxide, cuppric oxide, cobalt oxide, alumina and ferric oxide have been determined at various temperatures using the sintering technique. This investigation is based on the model accounting for the sum of the contribution of volume and surface diffusion to the overall shrinkage rate during the initial stage of sintering. Simultaneous measurements of shrinkages and shrinkage rates of the materials compacts were conducted for various annealing times, the results of which were then correlated to the diffusion coefficient.

  • PDF

Study on the feasibility of metallic saggar for synthesizing NCM cathode active materials-I (NCM 계 양극활물질 합성용 금속질 내화갑 가능성 연구-I)

  • Yong Il Park;Ji Hun Jung;Sung Hyun Woo;Jung Heon Lee;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.103-107
    • /
    • 2024
  • In this study, nickel, a pure metal material, was proposed as a saggar for synthesizing NCM [Li(NixCoyMnz)O2] cathode active material. Nickel is known as a metal that is resistant to oxidation and has a high melting point. Nickel is one of the main components of NCM cathode material and was expected to be free from problems with contamination from saggar during cathode material synthesis. We sought to confirm the possibility of nickel as a saggar for synthesizing NCM cathode active materials. When a Ni metal crucible and Ni0.8Co0.1Mn0.1(OH)2 (NCM 811) precursor material were reacted at 900℃ for a long time, the change in the reaction layer on the surface of the crucible over time was analyzed. The nickel crucible reaction layer formed during heat treatment at 900℃ was nickel oxide, and is thought to have been created by simultaneous oxygen diffusion from the cathode precursor oxide and reaction with oxygen in the atmosphere. The change in thickness of the oxide layer appears to slow down after 480 hours, which suggests that the rate of oxygen diffusion from the precursor is reduced. It remained combined without falling out of the crucible until 480 hours. However, it was confirmed that the oxide layer falls off after 720 hours, so it is thought that it can be used as saggar for NCM synthesis only for a certain period of time.

The Enhanced Physico-Chemical and Electrochemical Properties for Surface Modified NiO Cathode for Molten Carbonate Fuel Cells (MCFCs)

  • Choi, Hee Seon;Kim, Keon;Yi, Cheol-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1305-1311
    • /
    • 2014
  • The nickel oxide, the most widely used cathode material for the molten carbonate fuel cell (MCFC), has several disadvantages including NiO dissolution, poor mechanical strength, and corrosion phenomena during MCFC operation. The surface modification of NiO with lanthanum maintains the advantages, such as performance and stability, and suppresses the disadvantages of NiO cathode because the modification results in the formation of $LaNiO_3$ phase which has high conductivity, stability, and catalytic activity. As a result, La-modified NiO cathode shows low NiO dissolution, high degree of lithiation, and mechanical strength, and high cell performance and catalytic activity in comparison with the pristine NiO. These enhanced physico-chemical and electrochemical properties and the durability in marine environment allow MCFC to marine application as a auxiliary propulsion system.

Fabrication of Nickel Oxide Thin Film for Lithium Based Electrolyte by Sol-Gel Method and Electrochromic Properties in Lithium Based Electrolyte (Sol-Gel법을 통한 리튬 기반 전해질에 적합한 니켈 산화물 박막의 제조와 리튬 기반 전해질에서의 전기변색 특성)

  • Park, Sun-Ha;Yoo, Sung-Jong;Lim, Ju-Wan;Yun, Sung-Uk;Cha, In-Young;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.251-257
    • /
    • 2009
  • In this study, we fabricated nickel oxide thin film for lithium based electrolyte using sol-gel method. This film was deposited by dip-coating method with mixed solvent of DameH (N,N-dimethylaminoethanol) and DI water. As changing the ratio between DmaeH and DI water, nickel oxide thin film was presented in different charge density and optical transmittance because they were shown various thickness. It was accounted for changing viscosity and density by the ratio of DmaeH and DI water. The thin film synthesized with 1 : 1 ratio of DmaeH and DI water was expressed best electrochromic performance in lithium based electrolyte, because of thick thickness but porous structures.

Characteristics of Nickel Oxide Thin Film Manufactured by Reactive Magnetron Sputtering Method (반응성 마그네트론 스퍼터링법에 의한 Nickel Oxide 박막 제작 특성에 관한 연구)

  • Kim, Gi-Bum;Hwang, Yun-Sik;Kim, Yeung-Shik;Park, Jang-Sick
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, the DE(double erosion) cathode for the reactive magnetron sputtering system is developed for high deposition rate and high target utilization efficiency. The utilization efficiency of the developed DE cathode is 22% higher than that of normal SE(single erosion) cathode. Sputtering process for the nickel oxide thin films with the DE cathode is performed under the following conditions; power with $1kW{\sim}3kW$, pressure with 4mtorr and 8mtorr, oxygen flow ratio with $0%{\sim}80%$. As a result, the hysteresis phenomenon of discharge voltage in 4mtorr is lower than that in 8mtorr and the hysteresis phenomenon of discharge voltage is getting lower as the applied power is getting higher. The structure of cross section and surface roughness of the thin films are observed by FE-SEM and AFM. The structure of cross section of the thin films is columnar and the average surface roughness under oxygen flow ratio of 0%, 52.5% and 65.0% are $2.08{\AA}$, $2.20{\AA}$ and $0.854{\AA}$, respectively.

  • PDF

Layered Nickel-Based Oxides on Partially Oxidized Metallic Copper Foils for Lithium Ion Batteries

  • Chung, Young-Hoon;Park, Sun-Ha;Kim, Hyun-Sik;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.204-210
    • /
    • 2011
  • Thin film electrodes have been intensively studied for active materials and current collectors to enhance the electrochemical performance. Here, porous structures of nickel-based oxide films, consisting of nickel oxide and copper (II) oxide, which was derived from the copper substrate during the annealing process, were deposited on metallic copper foils. The half-cell tests revealed excellent capacity retention after $80^{th}$ charge/discharge cycles. Some films showed an excess of the theoretical capacity of nickel oxides, which mainly originate from partially oxidized copper substrates during annealing. These results exhibit that both a preparation method of an active materials and partially oxidized current collectors could be important roles to apply thin film electrodes.

Post-annealing Effect of NiO Thin Film Grown by RF Sputtering System on 4H-SiC Substrate (4H-SiC 기판 위에 RF Sputter로 증착된 NiO 박막의 후열처리 효과)

  • Soo-Young Moon;Min-Yeong Kim;Dong-Wook Byun;Geon-Hee Lee;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.170-174
    • /
    • 2023
  • Nickel oxide is a nonstoichiometric transparent conductive oxide with p-type conductivity, a wide-band energy gap of 3.4~4.0 eV, and excellent chemical stability, making it a very important candidate as a material for bipolar devices. P-type conductivity in Transparent Conductive Oxides (TCO) is controlled by the oxygen vacancy concentration. During the TCO film deposition process, additional oxygen diffusing into the NiO structure causes the formation of Ni 3p ions and Ni vacancies. This eventually affects the hole concentration of the p-type oxide thin film. In this work, the surface morphology and the electrical characteristics were confirmed in accordance with the annealing atmosphere of the nickel oxide thin film.