DOI QR코드

DOI QR Code

Synthesis and Characterization of Nickel Nanowires by an Anodic Aluminum Oxide Template-Based Electrodeposition

양극산화 알루미나 주형 기반의 전해 증착법을 이용한 니켈 나노선의 합성 및 특성 연구

  • Lim, Hyo-Ryoung (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 임효령 (한양대학교 융합화학공학과) ;
  • 좌용호 (한양대학교 융합화학공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2015.06.18
  • Accepted : 2015.06.25
  • Published : 2015.06.28

Abstract

Vertically oriented nickel nanowire arrays with a different diameter and length are synthesized in porous anodic aluminium oxide templates by an electrodeposition method. The pore diameters of the templates are adjusted by controlling the anodization conditions and then they are utilized as templates to grow nickel nanowire arrays. The nickel nanowires have the average diameters of approximately 25 and 260 nm and the crystal structure, morphology and microstructure of the nanowires are systematically investigated using XRD, FE-SEM and TEM analysis. The nickel nanowire arrays show a magnetic anisotropy with the easy axis parallel to the nanowires and the coercivity and remanence enhance with decreasing a wire diameter and increasing a wire length.

Keywords

References

  1. Y. Xia and P. Yang: Adv. Mater., 15 (2003) 351. https://doi.org/10.1002/adma.200390086
  2. M. Law, J. Goldberger and P. Yang: Annu. Rev. Mater. Res., 34 (2004) 83. https://doi.org/10.1146/annurev.matsci.34.040203.112300
  3. G. Shen, P.-C. Chen, K. Ryu and C. Zhou: J. Mater. Chem., 19 (2009) 828. https://doi.org/10.1039/B816543B
  4. H. Y. Yue, S. Huang, E. J. GuO, L. P. Wang, F. W. Kang, Z. M. Yu, Y. K. Guo and F. L. Sun: J. Korean Powder Metall. Inst., 18 (2011) 14. https://doi.org/10.4150/KPMI.2011.18.1.014
  5. H. Masuda and K. Fukuda: Science, 268 (1995) 1466. https://doi.org/10.1126/science.268.5216.1466
  6. L. Yi, L. Zhiyuan, C. Shuoshuo, H. Xing and H. Xinhua: Chem. Commun., 46 (2010) 309. https://doi.org/10.1039/B914703A
  7. S.-J. Sim, K.-K. Cho and Y.-Y. Kim: J. Korean Powder Metall. Inst., 18 (2011) 49. https://doi.org/10.4150/KPMI.2011.18.1.049
  8. V. Vega, T. Bohnert, S. Martens, M. Waleczek, J. M. Montero-Moreno, D. Gorlitz, V. M. Prida and K. Nielsch, Nanotechnology, 23 (2012) 465709. https://doi.org/10.1088/0957-4484/23/46/465709
  9. R. Lavin, J. C. Denardin, J. Escrig, D. Altbir, A. Cortes and H. Gomez, J. Appl. Phys., 106 (2009) 103903. https://doi.org/10.1063/1.3257242
  10. C. Li, C. Ni, W. Zhou, X. Duan and X. Jin, Mater. Lett., 106 (2013) 90. https://doi.org/10.1016/j.matlet.2013.04.109
  11. T. Gao, G.W. Meng, J. Zhang, Y.W.Wang, C.H. Liang, J.C. Fan and L.D. Zhang: Appl. Phys. A, 73 (2001) 251. https://doi.org/10.1007/s003390100910