• Title/Summary/Keyword: nickel (II)

Search Result 214, Processing Time 0.024 seconds

Syntheses of Infrared Absorbing Nickel Complex Dyes (적외흡수 니켈 착체색소의 합성)

  • Kim, Sung-Hoon;Lim, Yong-Jin
    • Textile Coloration and Finishing
    • /
    • v.3 no.3
    • /
    • pp.29-33
    • /
    • 1991
  • Some ir absorbing nickel complex dyes were synthesized by the reaction of phenylene diamines, 2-aminobenzenethiols and 2-aminobenzene selenols, tetrathiols with nickel (II) chloride. These dyes absorbed ir light, but those from phenylene diamines absorbed at 780-800 nm which is the most favorable wavelength region for semiconductor laser optical recording dye medium.

  • PDF

Synthesis of a Di-N-cyanoethylated Tetraaza Macrocycle Containing Eight C-Methyl Groups and Its Nickel(II) Complex: Effects of the Methyl Groups on Their Properties

  • Kang, Shin-Geol;Ryu, Ki-Seok;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.81-85
    • /
    • 2002
  • A new di-N-cyanoethylated 14-membered tetraaza macrocycle 1,8-bis(2-cyanoethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane $(L^2)$ and its nickel(II) complex $[NiL^2(OAc)]^+$ have been prepared. The square-planar complex $[NiL^2](C IO_4)_2$ can be prepared by addition of $HClO_4$ to a hot aqueous solution of $[NiL^2(OAc)]^+$ The Ni-N (tertiary amino group) bond distances $(2.008{\AA})$ of $[NiL^2](C IO_4)_2$ are relatively long, and the complex exhibits a d-d transition band at unusually long wavelength (ca. 515 nm). The complex $[NiL^2](C IO_4)_2$ rapidly reacts with acetate ion or ethylenediamine (en) to produce $[NiL^2(OAc)]^+$ or [Ni(en)_3]^{2+}$, respectively, and is readily decomposed in NaOH (0.01 M) solution. The chemical properties of $[NiL^2]^{2+}$ as well as its synthetic procedure are quite different from those for other related 14-membered tetraaza macrocyclic complexes. Effects of the N-cyanoethyl and C-methyl groups on the properties of $L^2$.

Activated Carbon-Nickel (II) Oxide Electrodes for Capacitive Deionization Process

  • Gandionco, Karl Adrian;Kim, Jin Won;Ocon, Joey D.;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.552-559
    • /
    • 2020
  • Activated carbon-nickel (II) oxide (AC-NiO) electrodes were studied as materials for the capacitive deionization (CDI) of aqueous sodium chloride solution. AC-NiO electrodes were fabricated through physical mixing and low-temperature heating of precursor materials. The amount of NiO in the electrodes was varied and its effect on the deionization performance was investigated using a single-pass mode CDI setup. The pure activated carbon electrode showed the highest specific surface area among the electrodes. However, the AC-NiO electrode with approximately 10 and 20% of NiO displayed better deionization performance. The addition of a dielectric material like NiO to the carbon material resulted in the enhancement of the electric field, which eventually led to an improved deionization performance. Among all as-prepared electrodes, the AC-NiO electrode with approximately 10% of NiO gave the highest salt adsorption capacity and charge efficiency, which are equal to 7.46 mg/g and 90.1%, respectively. This finding can be attributed to the optimum enhancement of the physical and chemical characteristics of the electrode brought by the addition of the appropriate amount of NiO.

Biological Screening of a Novel Nickel (II) Tyrosine Complex

  • Islam, Md. Rafiqul;Islam, S.M. Rafiqul;Noman, Abu Shadat Mohammod;Khanam, Jahan Ara;Ali, Shaikh Mohammad Mohsin;Alam, Shahidul;Lee, Min-Woong
    • Mycobiology
    • /
    • v.35 no.1
    • /
    • pp.25-29
    • /
    • 2007
  • A newly synthesized Nickel (II) tyrosine complex was screened as potential antimicrobial agent against a number of medically important bacteria (Bacillus subtilis, Streptococcus ${\beta}$-haemolytica, Escherichia coli, Shigella dysenterae) and fungi (Aspergillus fumigatus, Candida albicans, Aspergillus niger, Aspergillus flavus, Penicillium sp.) strains. were used for antifungal activity. The antimicrobial activity was evaluated using the Agar Disc method. Moreover, the minimum inhibitory concentration of the complexes was determined against the same pathogenic bacteria and the values were found between $4{\sim}64\;{\mu}g\;ml^{-1}$. Brine shrimp bioassay was carried out for cytotoxicity measurements of the complexes. The $LC_{50}$ values were calculated after probit transformation of the resulting mortality data and found to be 6 ${\mu}g\;ml^{-1}$.

Microwave Synthesis of a Porous Metal-Organic Framework, Nickel(II) Dihydroxyterephthalate and its Catalytic Properties in Oxidation of Cyclohexene

  • Lee, Ji-Sun;Halligudi, Shiva B.;Jang, Nak-Han;Hwang, Dong-Won;Chang, Jong-San;Hwang, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1489-1495
    • /
    • 2010
  • A porous coordination solid of nickel(II) dihydroxyterephthalate has been synthesized by the microwave-assisted (MW) method. The synthesized nickel(II) dihyroxylterephthalate was designated by the general formula of [$Ni_2$(dhtp) $(H_2O)_2]{\cdot}8H_2O$ (where, dhtp = 2,5-dihydroxyterephthalate, denoted by Ni-DHTP). The effect of microwave-irradiation temperature and time of irradiation on the porosity and morphological changes in the solids have also been investigated. The catalytic performance of Ni-DHTP synthesized by MW method has been studied in the oxidation of cyclohexene with aqueous $H_2O_2$, which gave cyclohexene oxide as the primary product and 2-cyclohexene-1-ol as a major product.

Synthesis, Magneto-Spectral, Electrochemical, Thermal Characterization and Antimicrobial Investigations of Some Nickel(II) Complexes of Hydrazones of Isoniazid (Isoniazid의 hydrazone을 갖는 몇 가지 니켈(II) 착물들의 합성, 자기적 및 전기적 성질, 열적 특성과 항균성에 대한 연구)

  • Prasad, Surendra;Agarwal, Ram K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.683-692
    • /
    • 2009
  • The synthesis of a novel series of nickel(II) complexes with new ligands derived from hydrazones of isoniazid have been reported in present work. The complexes have general compositions [$Ni(L)_2X_2$] or $[Ni(L)_3](ClO_4)_2$ {L = N-isonicotinamido-furfuraldimine (INH-FFL), N-isonicotinamido-3',4',5'-trimethoxybenzaldimine (INH-TMB) or N-isonicotinamido-cinnamalidene (INH-CIN) and X = $Cl^-$, ${NO_3}^-$, $ NCS^-$ or $CH_3COO^-$}. The ligands hydrazones behave as neutral bidentates (N and O donor) through the carbonyl oxygen and azomethine nitrogen. The new complexes with octahedral geometry have been characterized by elemental analysis, molecular weight determinations, magnetic susceptibility/moment, thermogravimetric, electrochemical and spectroscopic studies viz. infrared and electronic spectra. On the basis of conductivity measurements in nitrobenzene ($PhNO_2$) solution the [$Ni(L)_2X_2$] and $[Ni(L)_3](ClO_4)_2$ complexes have been found to be non-electrolytes and 1:2 electrolytes, respectively. Thermal properties have also been investigated, which support the geometry of the complexes. Antibacterial and antifungal properties of nickel(II) complexes and few standard drugs have also been examined and it has been observed that the complexes have moderate antibacterial activities.