Recently, the importance of impact-based forecasting has increased along with the socio-economic impact of severe weather have emerged. As news articles contain unconstructed information closely related to the people's life, this study developed and evaluated a binary classification algorithm about snowfall damage information by using media articles text mining. We collected news articles during 2009 to 2021 which containing 'heavy snow' in its body context and labelled whether each article correspond to specific damage fields such as car accident. To develop a classifier, we proposed a probability-based classifier based on the ratio of the two conditional probabilities, which is defined as I/O Ratio in this study. During the construction process, we also adopted the n-gram approach to consider contextual meaning of each keyword. The accuracy of the classifier was 75%, supporting the possibility of application of news big data to the impact-based forecasting. We expect the performance of the classifier will be improve in the further research as the various training data is accumulated. The result of this study can be readily expanded by applying the same methodology to other disasters in the future. Furthermore, the result of this study can reduce social and economic damage of high impact weather by supporting the establishment of an integrated meteorological decision support system.
Objectives: This study aimed to explore the health inequality discourse in the Korean press by analyzing newspaper articles using a relatively new content analysis technique. Methods: This study used the search term "health inequality" to collect articles containing that term that were published between 2000 and 2018. The collected articles went through pre-processing and topic modeling, and the contents and temporal trends of the extracted topics were analyzed. Results: A total of 1038 articles were identified, and 5 topics were extracted. As the number of studies on health inequality has increased over the past 2 decades, so too has the number of news articles regarding health inequality. The extracted topics were public health policies, social inequalities in health, inequality as a social problem, healthcare policies, and regional health gaps. The total number of occurrences of each topic increased every year, and the trend observed for each theme was influenced by events related to its contents, such as elections. Finally, the frequency of appearance of each topic differed depending on the type of news source. Conclusions: The results of this study can be used as preliminary data for future attempts to address health inequality in Korea. To make addressing health inequality part of the public agenda, the media's perspective and discourse regarding health inequality should be monitored to facilitate further strategic action.
We have investigated the North Korean astronomical articles published in five media such as the Rodong Sinmun (노동신문), Minju Choson (민주조선), Tongil Sinbo (통일신보), Munhak Sinmun (문학신 문), and Choson Sinbo (조선신보) for 15 years from 2005 to 2019. The astronomical articles were classified by subject to study the astronomical activity in North Korea. We have examined the perceptions of astronomy in North Korean society through the temporal variation of astronomical articles according to four subjects. As a result, we have found that there are many articles in the subject of Historical Astronomy and Astronomical News in the media. In the era of Kim Jong-un, the articles on the Historical Astronomy decreased while the Astronomy news tended to increase. We have also summarized the specific issues and topics including the change of the standard meridian, launch of satellites, astronomical news, and so forth. The North Korean astronomical article is a valuable resource to examine the current status of North Korea's astronomy and astronomical education. We expect the results of this study to be a useful resource in preparing for inter-Korean astronomical cooperation.
본 연구의 목적은 텍스트네트워트분석을 통해 스토킹에 대한 정치성향의 언론기사 내에 핵심 단어를 탐색하고 내재된 의도를 살펴보는 것이다. 2018년 1월 1일부터 2022년 12월 31일까지 보도된 보수언론기사(조선일보, 중앙일보) 824건, 진보언론기사(한겨레신문, 경향신문) 783건으로 총 1,607건을 선정하여 LDA(Latent Dirichlet Allocation) 기반의 토픽모델링 기법으로 도출된 주제범주의 양상을 탐색하였다. 연구결과는 보수언론과 진보언론의 공통된 토픽은 젠더폭력의 인식개선, 신변보호 및 처벌강도, 스토커 신상공개 도출되었고 두 언론의 상이한 토픽은 보수언론에서는 스토커의 가해행위, '신당역 살인사건'의 개요와 진보언론은 '신당역 살인사건'의 가중처벌요구, (사이버공간의) 성착취 범죄 근절로 구성되었다. 본 연구는 스토킹에 대한 언론기사 간의 이념적 의견에 따라 보도형태에 변화가 있음을 시사한다.
세계에는 수많은 사람들이 살아가고 있고, 사람들의 일상으로부터 매일, 매 시간 단위로 새로운 뉴스가 발생한다. 발생되는 뉴스는 예정된 일과 예상하지 못한 일들을 포함하고 있다. 발생하는 뉴스의 거대한 양과 이를 전달하는 수많은 미디어들로 인해 사람들은 뉴스 콘텐츠를 이용하는데 많은 시간을 소비하게 된다. 하지만 미디어에 시시각각 나타나는 속보와 실시간 이슈의 대부분이 가십 기사로 이루어져 있어 사용자들이 자신의 성향에 맞는 뉴스를 선별하고, 뉴스로부터 정보를 획득하는 것은 쉽지 않은 일이다. 또한 사용자의 관심사가 시간에 따라 변하기 때문에 뉴스 제공에 있어 사용자의 변하는 관심사를 반영하는 것이 요구된다. 본 논문에서는 사용자의 최근 관심사를 기반으로 사용자 선호도에 맞는 뉴스를 제공하기 위한 콘텐츠 기반의 추천 기법 및 시스템을 제안한다. 사용자의 최근 선호도를 파악하기 위하여 소셜 네트워크 서비스인 Facebook 사용자의 정보와 최근 게시글을 이용하여 동적으로 사용자 프로파일을 생성하여 이를 뉴스 서비스에 활용하고, 사용자 선호도에 적합한 뉴스를 추출하기 위해서 뉴스 콘텐츠의 분석을 요구한다. 뉴스 콘텐츠 분석을 위해 미디어에서 제공되는 뉴스의 카테고리를 사용하고, 뉴스 방송원고의 분석 및 주요 키워드 추출을 통해 뉴스 프로파일을 생성한다. 사용자 프로파일과 뉴스 프로파일 간의 유사도 측정을 위해서는 두 프로파일 간 형식의 일치화가 요구되므로 사용자 프로파일을 뉴스 프로파일과 동일한 형태로 생성한다. 사용자가 시스템에 접속하면 시스템은 사용자 프로파일에 명시된 선호도를 기반으로 뉴스 프로파일과의 유사도를 측정하고, 사용자 선호도에 가장 적합한 뉴스들을 제공하게 된다. 또한 사용자에게 제공된 뉴스 프로파일과 다른 뉴스 프로파일들 간에 유사도를 측정하여 유사도가 높은 관련된 뉴스들을 제공하게 된다. 제안한 개인화된 뉴스 서비스의 성능을 평가하기 위해 사용자에게 추천된 뉴스에 대한 사용자 평가와 시스템 예측값의 오차를 기반으로 6Sub-Vectors 벤치마크 알고리즘과 성능 평가를 수행하였고, 실험 결과를 통해 제안한 시스템의 우수성을 입증하였다.
이 연구에서는 사건중심 뉴스기사 요약문을 자동생성하기 위해 뉴스기사들을 SVM 분류기를 이용하여 사건 주제범주로 먼저 분류한 후, 각 주제범주 내에서 싱글패스 클러스터링 알고리즘을 통해 특정한 사건 관련 기사들을 탐지하는 기법을 제안하였다. 사건탐지 성능을 높이기 위해 고유명사에 가중치를 부여하고, 뉴스의 발생시간을 고려한 시간벌점함수를 제안하였다. 또한 일정 규모 이상의 클러스터를 분할하여 적절한 크기의 사건 클러스터를 생성하도록 수정된 싱글패스 알고리즘을 사용하였다. 이 연구에서 제안한 사건탐지 기법의 성능은 단순 싱글패스 클러스터링 기법에 비해 정확률, 재현율, F-척도에서 각각 37.1%, 0.1%, 35.4%의 성능 향상률을 보였고, 오보율과 탐지비용에서는 각각 74.7%, 11.3%의 향상률을 나타냈다.
이 연구는 2006년부터 2015년까지 최근 10년간 뉴스 보도를 다룬 국내 학술 논문의 주제어에 대한 연결망을 통해 연구의 흐름과 경향을 살펴보았다. 총 1,108편의 논문에 제시된 4,410건의 주제어 연결망 분석을 실시한 결과, 국내 언론 보도를 다룬 연구에서 프레임, 의제설정, 제삼자효과, 선택적노출, 이용과충족 등이 주요 이론으로 다뤄진 것으로 나타났다. 이중 프레임에 대한 연구가 압도적으로 많았다. 연구영역으로는 정치, 경제, 과학보도, 국제뉴스 및 관광 등을 다루었으나, 문화, 스포츠 및 생활뉴스 등의 분야에 대한 연구는 나타나지 않았다. 매체별로는 전통매체와 새로운 매체에 대한 연구가 모두 활발하게 이뤄졌다. 특히 방송뉴스와 온라인뉴스 및 소셜미디어에 대한 연구가 빈번하게 나타났다.
A recent advance in communication technologies accelerates the spread of food safety issues once presented by the news media. To respond to those safety issues and take steps in a timely manner, automatically detecting related information from the news data matters. This work presents an AI-based system that detects risk information within a food-related news article. Experts in food safety areas participated in labeling risk information from the food-related news articles; we acquired 43,527 articles in which food names and risk information are marked as labels. Based on the news document, our system automatically detects food names and risk information by analyzing similarities between words within a text by leveraging learned word embedding vectors. Our AI-based system shows higher detection accuracy scores over a non-AI rule-based system: achieving an absolute gain of +32.94% in F1 for the food name category and +41.53% for the risk information category.
With many consumers being exposed to news via social media platforms, news organizations are challenged to attract visitors and generate revenue during visits to their websites. They therefore need detailed information on how to write articles and headlines to increase visitors' engagement with the content to drive advertising revenues. For those news organizations whose business model depends mainly on advertisements, rather than subscriptions, it is particularly crucial to understand what makes the website attractive to their visitors, what drives users to stay on the website, and what factors affect a user's exit decision. The current research examines individual news consumers' choices to find patterns of increase or decrease in user engagement relative to a variety of topics, as well as to the mood or tone of the content. Using clickstream data from a major news organization, the authors develop a user-level dynamic model of clickstream behavior that takes into account the content of both headlines and stories that visitors read. The authors find that readers appear to exhibit state dependence in the tone of the articles that they read. They also show how the topics expressed in headlines can affect the amount of content readers consume when visiting the news organization to a much larger degree than the topics expressed in the content of the article. Online publishers can make use of such findings to present visitors with content that is likely to maintain and/or increase their engagement and consequently drive advertising revenue.
최근 웹툰, 음원, 동영상, 게임, 교육, 앱 등 많은 콘텐츠 기업에서 콘텐츠 유료화 정책을 추진하고 있으나, 무료 콘텐츠에 익숙한 독자들의 문화적 관성이 온라인 콘텐츠의 유료화 전환에 많은 어려움을 주고 있다. 특히 온라인 뉴스 콘텐츠는 포털 사이트를 통해 무료로 배포되고 있어 유료화에 대한 독자들의 거부감이 다른 온라인 콘텐츠 보다 더욱 심한 실정이다. 이러한 문제 해결을 위해 학계 및 산업계에서 온라인 콘텐츠의 유료화 방안에 대한 연구가 다양한 차원에서 진행되었다. 최근에는 일부 온라인 뉴스 매체를 중심으로 독자들이 자발적으로 마음에 드는 뉴스 콘텐츠에 대해 원하는 만큼의 구독료를 지불하게 하는 Pay-What-You-Want (PWYW) 지불모델을 적용하는 시도가 이뤄지고 있다. 이에 본 연구는 PWYW 모델의 성공적인 정착을 위한 선결요인으로 독자의 자발적 독자구독료 지불행위에 영향을 미치는 온라인 뉴스 콘텐츠의 체계적 속성을 도출하고, 각 속성 및 하위 속성의 상대적 중요도를 비교 분석하였다. 좀 더 구체적으로, 선행연구 분석을 통해 기사제목 유형, 기사 이미지 자극성, 기사 가독성, 기사 유형, 기사 지배적 정서, 기사 내용-이미지 유사성 등 총 여섯 가지의 온라인 뉴스 콘텐츠의 체계적 속성을 도출하였으며, 내용분석(content analysis)을 통해 각 기사의 속성값을 측정하고 이를 기반으로 컨조인트 분석(conjoint analysis)을 실시하여 속성 간 상대적 중요도를 계산 및 검증하였다. PWYW 모델이 적용된 온라인 뉴스 콘텐츠 379개에 대한 컨조인트 분석 결과, 기사 가독성, 기사 내용-이미지 유사성, 기사제목 유형 등의 순으로 자발적 독자구독료에 큰 영향을 주는 것으로 분석된 반면, 기사 유형, 기사 지배적 정서, 기사 이미지 자극성 등은 상대적으로 낮은 중요도를 보이는 것으로 조사되었다. 본 연구는 내용분석과 컨조인트 분석을 동시에 실시하여 온라인 뉴스 콘텐츠에 대한 자발적 지불의도에 영향을 미치는 체계적 요인을 도출하고, 그 상대적 중요도까지 살펴보았다는 점에서 학술적 의의가 있으며, 온라인 뉴스 콘텐츠 제작자 및 사이트 운영자들로 하여금 독자들의 자발적 지불을 유도할 수 있는 가이드라인을 제시하였다는 점에서 그 실무적 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.