• Title/Summary/Keyword: new strain

Search Result 2,120, Processing Time 0.032 seconds

Development of a Quadrilateral Enhanced Assumed Strain Element for Efficient and Accurate Thermal Stress Analysis (효과적인 열응력 해석을 위한 사각형 추가 변형률 요소의 개발)

  • Ko, Jin-Hwan;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1205-1214
    • /
    • 1999
  • A new quadrilateral plane stress element is developed for efficient and accurate analysis of thermal stress problems. It is convenient to use the same mesh and the same shape functions for thermal analysis and stress analysis. But, because of the inconsistency between deformation related strain field and thermal strain field, oscillatory responses and considerable errors in stresses are resulted in. To avoid undesired oscillations, strain approximation is enhanced by supplementing several assumed strain terms based on the variational principle. Thermal deformation is incorporated into the generalized mixed variational principle for displacement, strain and stress fields, and basic equations for the modified enhanced assumed strain method are derived. For the stress approximation of bilinear elements, the $5{\beta}$ version of Pian and Sumihara is adopted. The numerical results for several problems show that the present element behaves well and reduces oscillatory responses. it also results in almost the same magnitude of error as compared with the quadratic element.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part V: Effects of Strain Rate and Temperature (조선 해양 구조물용 강재의 소성 및 파단 특성 V: 온도 의존성을 고려한 변형률 속도에 관한 실험적 연구)

  • Choung, Joon-Mo;Im, Sung-Woo;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.73-84
    • /
    • 2011
  • This is the fifth in a series of companion papers dealing with the dynamic hardening properties of various marine structural steels at intermediate strain rates. Five steps of strain rate levels (0.001, 1, 10, 100, 200/s) and three steps of temperature levels (LT ($-40^{\circ}C$), RT, and HT ($200^{\circ}C$)) were taken into account for the dynamic tensile tests of three types of marine structural steels: API 2W50 and Classifications EH36 and DH36. The total number of specimens was 180 pieces. It was seen that the effects of dynamic hardening became clearer at LT than at RT. Dynamic strain aging accompanying serrated flow stress curves was also observed from high temperature tests for all kinds of steels. The dynamic hardening factors (DHFs) at the two temperature levels of LT and RT were derived at the three plastic strain levels of 0.05, 0.10, 0.15 from dynamic tensile tests. Meanwhile, no DHFs were found for the high temperature tests because a slight negative strain rate dependency due to dynamic strain aging had occurred. A new formulation to determine material constant D in a Cowper-Symonds constitutive equation is provided as a function of the plastic strain rate, as well as the plastic strain level. The proposed formula is verified by comparing with test flow stress curves, not only at intermediate strain rate ranges but also at high strain rate ranges.

Structural response analysis in time and frequency domain considering both ductility and strain rate effects under uniform and multiple-support earthquake excitations

  • Liu, Guohuan;Lian, Jijian;Liang, Chao;Zhao, Mi
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.989-1012
    • /
    • 2016
  • The structural dynamic behavior and yield strength considering both ductility and strain rate effects are analyzed in this article. For the single-degree-of-freedom (SDOF) system, the relationship between the relative velocity and the strain rate response is deduced and the strain rate spectrum is presented. The ductility factor can be incorporated into the strain rate spectrum conveniently based on the constant-ductility velocity response spectrum. With the application of strain rate spectrum, it is convenient to consider the ductility and strain rate effects in engineering practice. The modal combination method, i.e., square root of the sum of the squares (SRSS) method, is employed to calculate the maximum strain rate of the elastoplastic multiple-degree-of-freedom (MDOF) system under uniform excitation. Considering the spatially varying ground motions, a new response spectrum method is developed by incorporating the ductility factor and strain rate into the conventional response spectrum method. In order to further analyze the effects of strain rate and ductility on structural dynamic behavior and yield strength, the cantilever beam (one-dimensional) and the triangular element (two-dimensional) are taken as numerical examples to calculate their seismic responses in time domain. Numerical results show that the permanent displacements with and without considering the strain rate effect are significantly different from each other. It is not only necessary in theory but also significant in engineering practice to take the ductility and strain rate effects into consideration.

Stress-strain relationships for steel fiber reinforced self-compacting concrete

  • Aslani, Farhad;Natoori, Mehrnaz
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.295-322
    • /
    • 2013
  • Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, toughness, energy absorption capacity and fracture toughness. Modification in the mix design of SCC may have a significant influence on the SFRSCC mechanical properties. Therefore, it is vital to investigate whether all of the assumed hypotheses for steel fiber reinforced concrete (SFRC) are also valid for SFRSCC structures. Although available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates material's mechanical properties. The present study includes: a) evaluation and comparison of the current analytical models used for estimating the mechanical properties of SFRSCC and SFRC, b) proposing new relationships for SFRSCC mixtures mechanical properties. The investigated mechanical properties are based on the available experimental results and include: compressive strength, modulus of elasticity, strain at peak compressive strength, tensile strength, and compressive and tensile stress-strain curves.

Expression of Recombinant Human Cytochrome P450 1A2 in Escherichia coli Bacterial Mutagenicity Tester Strain

  • Chun, Young-Jin
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.305-309
    • /
    • 1998
  • Human cytochrome P450 1A2 is one of the major cytochrome P450s in human liver. It is known to be capable of activating a number of carcinogens such as arylamines and heterocyclic amines. In order to develop the new bacterial mutagenicity test system with human P450, a full length of human P450 1A2 cDNA inserted into pCW bacterial expression vector was introduced to Escherichia coli WP2 uvrA strain which is a well-known E. coli strain for bacterial reverse mutagenicity assay. Expressed human P450 1A2 showed typical P450 hemoprotein spectra. Maximum expression was achieved at 48 hrs after incubating at $30^{\circ}C$ in terrific broth containing ampicillin, IPTG and other supplements. High level expression of P450 1A2 in E. coli WP2 uvrA membranes was determined in SDS-PAGE. The well-known mutagens 2-aminoanthracene and MElQ increased the revertant colonies of E. coli WP2 uvrA expressing human P450 1A2 without an exogenous rat hepatic post-mitochondrial supernatant (S9 fraction) in a dose-dependent manner. The results show that the functional expression of human P450 in bacterial mutagenicity tester strain will provide a useful tool for studying the mechanism of the mutagenesis and carcinogenesis of new drugs and environmental chemicals.

  • PDF

A Study of Fatigue Life Prediction for Automotive Spot Weldment Using Local Strain Approach (국부변형률근사법을 이용한 차체 점용접부의 피로수명 예측에 관한 연구)

  • Lee, Song-In;Gwon, Il-Hyeon;Lee, Beom-Jun;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.220-227
    • /
    • 2001
  • The fatigue crack initiation life is studied on automotive tensile-shear spot weldment made from cold rolled carbon steel(SPC) sheet by using DCPDM and local strain approach. It can be found that the fatigue crack initiation behavior in spot weldment can be definitely detected by DCPDM system. To predict the fatigue life of spot weldment, the local stresses and strains at the potential critical region are estimated by approximate method based on Neubers rule and elastic-plastic FEM analysis. A satisfactory correlation between the predicted life obtained from Local strain approach based on Neubers rule and experimental life can be found in spot weldment within a factor of 2.

Modifications of RC/TS(Resonant Column and Torsional Shear) Device for the Large Strain (대변형율 시험을 위한 공진주 비틂전단 시험기의 수정)

  • Bae, Yoon-Shin
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.1-10
    • /
    • 2008
  • Conventional RC/TS(resonant column and torsional shear) device usesa specimen with an aspect ratio(height-to-diameter) of 2:1 and this generates a maximum shear strain in the sample of about 1.5% at the maximum rotation of the drives system. The objective of this study is to modify RC/TS device to generate higher strain amplitude. The modifications include a new base pedestal to overcome the limitations in the travel of the drive system and modification of coil wiring to increase torque. The effects of the new coil wire on torque in the electro magnetic drive system were evaluated and the application of modified device was illustrated using sand soil.

  • PDF

Studies on the Clostridium bovis sp. nov., the predominant species isolated from the feces of Holstein cattle (홀스타인 젖소의 분변에서 우세균종으로 분리되는 새로운 Clostridium bovis 에 관한 연구)

  • Lee, Wan-kyu
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.99-105
    • /
    • 1994
  • Clotridium bovis sp. nov, is described on the basis of 5 strains isolated from the feces of Holstein cattle. The isolate are gram-positive, motile, strict anaerobic spore forming rods. They differ from all the validly described related species of the genus Clostridium in carbohydrate fermentation pattern, G+C mol% and DNA homologies. Acid is produced from arabinose, xylose, glucose, mannose, fructose, galactose, sucrose, maltose, cellobiose, lactose, trehalose, melibiose, raffinose, inulin and salicin. Major end products in PYFG broth are large amounts of butyric acid and lactic acid, and trace amounts of acetic and succinic acids. The G+C mol% of DNA from the type strain is 26 mol%. The type strain of Clostridium bovis is Catt $66^T$ strain.

  • PDF

Production, Purification, and Characterization of Antifungal Metabolite from Pseudomonas aeruginosa SD12, a New Strain Obtained from Tannery Waste Polluted Soil

  • Dharni, Seema;Alam, Mansoor;Kalani, Komal;Abdul-Khaliq, Abdul-Khaliq;Samad, Abdul;Srivastava, Santosh Kumar;Patra, Dharani Dhar
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • A new strain, SD12, was isolated from tannery waste polluted soil and identified as Pseudomonas aeruginosa on the basis of phenotypic traits and by comparison of 16S rRNA sequences. This bacterium exhibited broad-spectrum antagonistic activity against phytopathogenic fungi. The strain produced phosphatases, cellulases, proteases, pectinases, and HCN and also retained its ability to produce hydroxamate-type siderophore. A bioactive metabolite was isolated from P. aeruginosa SD12 and was characterized as 1-hydroxyphenazine ((1-OH-PHZ) by nuclear magnetic resonance (NMR) spectral analysis. The strain was used as a biocontrol agent against root rot and wilt disease of pyrethrum caused by Rhizoctonia solani. The stain is also reported to increase the growth and biomass of Plantago ovata. The purified compound, 1-hydroxyphenazine, also showed broad-spectrum antagonistic activity towards a range of phytopathogenic fungi, which is the first report of its kind.

Technology of Stretchable Interconnector and Strain Sensors for Stretchable Electronics (신축성 전자소자를 위한 신축성 전극 및 스트레인 센서 개발 동향)

  • Park, Jin Yeong;Lee, Won Jae;Nam, Hyun Jin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.25-34
    • /
    • 2018
  • In this paper, we review the latest technical progress and commercialization of stretchable interconnectors, stretchable strain sensors, and stretchable substrates for stretchable electronics. The development of stretchable electronics can pave a way for new applications such as wearable devices, bio-integrated devices, healthcare and monitoring, and soft robotics. The essential components of stretchable electronic devices are stretchable interconnector and stretchable substrate. Stretchable interconnector should have high stretchability and high electrical conductivity as well as stability under severe mechanical deformation. Therefore several nanocomposite-based materials using CNT, graphene, nanowire, and metal flake have been developed. Geometric engineering such as wavy, serpentine, buckled and mesh structure has been well developed. Stretchable substrate should also pose high stretchability and compatibility with stretchable sensing or interconnecting material. We summarize the recent research results of new materials for stretchable interconnector and substrate as well as strain sensors. The Important challenges in development of the stretchable interconnector and substrate are also briefly discussed.