• 제목/요약/키워드: new plate theory

검색결과 249건 처리시간 0.026초

다층간분리된 적층판의 자유진동해석 (Free Vibration Analysis of Multi-delaminated Composite Plates)

  • Taehyo Park;Seokoh Ma;Yunju Byun
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.25-32
    • /
    • 2004
  • In this proposed work new finite element model for multi-delaminated plates is proposed. In the current analysis procedures of multi-delaminated plates, plate element based on Mindlin plate theory is used in order to obtain accurate results of out-of-plane displacement of thick plate. And for delaminated region, plate element based on Kirchhoff plate theory is considered. To satisfy the displacement continuity conditions, displacement vector based on Kirchhoff theory is transformed to displacement of transition element. The numerical results show that the effect of delaminations on the modal parameters of delaminated composites plates is dependent not only on the size, the location and the number of the delaminations but also on the mode number and boundary conditions. Kirchhoff based model have higher natural frequency than Mindlin based model and natural frequency of the presented model is closed to Mindlin based model.

  • PDF

Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory

  • Bouchafa, Ali;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1493-1515
    • /
    • 2015
  • A new refined hyperbolic shear deformation theory (RHSDT), which involves only four unknown functions as against five in case of other shear deformation theories, is presented for the thermoelastic bending analysis of functionally graded sandwich plates. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson's ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. The influences played by the transverse shear deformation, thermal load, plate aspect ratio and volume fraction distribution are studied. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of functionally graded plates.

A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates

  • Khetir, Hafid;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.391-402
    • /
    • 2017
  • In this paper, a new nonlocal trigonometric shear deformation theory is proposed for thermal buckling response of nanosize functionally graded (FG) nano-plates resting on two-parameter elastic foundation under various types of thermal environments. This theory uses for the first time, undetermined integral variables and it contains only four unknowns, that is even less than the first shear deformation theory (FSDT). It is considered that the FG nano-plate is exposed to uniform, linear and sinusoidal temperature rises. Mori-Tanaka model is utilized to define the gradually variation of material properties along the plate thickness. Nonlocal elasticity theory of Eringen is employed to capture the size influences. Through the stationary potential energy the governing equations are derived for a refined nonlocal four-variable shear deformation plate theory and then solved analytically. A variety of examples is proposed to demonstrate the importance of elastic foundation parameters, various temperature fields, nonlocality, material composition, aspect and side-to-thickness ratios on critical stability temperatures of FG nano-plate.

Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.511-525
    • /
    • 2019
  • This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.

A novel four variable refined plate theory for wave propagation in functionally graded material plates

  • Fourn, Hocine;Atmane, Hassen Ait;Bourada, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.109-122
    • /
    • 2018
  • In This work an analysis of the propagation of waves of functionally graduated plates is presented by using a high order hyperbolic (HSDT) shear deformation theory. This theory has only four variables, which is less than the theory of first order shear deformation (FSDT). Therefore, a shear correction coefficient is not required. Unlike other conventional shear deformation theories, the present work includes a new field of displacement which introduces indeterminate integral variables. The properties of materials are supposed classified in the direction of the thickness according to two simple distributions of a power law in terms of volume fractions of constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory

  • Issad, Mohammed Naim;Fekrar, Abdelkader;Bakora, Ahmed;Bessaim, Aicha;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.711-719
    • /
    • 2018
  • The present work presents a free vibration and buckling analysis of orthotropic plates by proposing a novel two variable refined plate theory. Contrary to the conventional higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed theory utilizes a novel displacement field which incorporates undetermined integral terms and involves only two unknowns. The governing equations are obtained from the dynamic version of principle of virtual works. The analytical solution of a simply supported orthotropic plate has been determined by using the Navier method. Numerical investigations are performed by employing the proposed model and the obtained results are compared with the existing HSDTs.

A mechanical behavior of composite plates using a simple three variable refined plate theory

  • Bakoura, Ahmed;Djedid, Ibrahim Klouche;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.617-625
    • /
    • 2022
  • A novel three variable refined plate theory (TVRPT) is developed in this article for laminated composite plates for the first time. The theory takes into account the nonlinear variation of transverse shear deformations, and satisfies the boundary conditions of zero traction on the plate surfaces without considering the "shear correction factor". The important characteristic of this new kinematic is that the unknowns numbers is only 3 as is employed in "classical plate theory" (CPT). The numerical results of the current theory are compared with 3D-elasticity solutions and the calculations of "first order theories" and other higher order models found in the literature.

An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates

  • Bellifa, Hichem;Bakora, Ahmed;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.257-270
    • /
    • 2017
  • In this article, an efficient and simple refined theory is proposed for buckling analysis of functionally graded plates by using a new displacement field which includes undetermined integral variables. This theory contains only four unknowns, with is even less than the first shear deformation theory (FSDT). Governing equations are obtained from the principle of virtual works. The closed-form solutions of rectangular plates are determined. Comparison studies are carried out to check the validity of obtained results. The influences of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are examined and discussed.

적층판의 원통형 굽힘에 대한 횡방향 전단병형 (Transverse Shear Deformation in the Cylindrical Bending of Laminated Plates)

  • 이수용;박정선
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2696-2704
    • /
    • 2000
  • This paper presents a new laminated plate theory for the cylindrical bending of laminated plated. The theory assumes that in plane displacements vary exponentially through plate thickness. Analytical solutions are derived for simply supported plates subjected to transverse loading. The accuracy of the present theory is examined for unsymmetric laminates, and the numerical results are compared with three-dimensional elasticity solutions of Pagano. The present theory predicts displacements and stresses for very thick plates very accurately. In particular, transverse shear stresses obtained form constitutive equations are predicted very accurately.

A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates

  • Hebali, Habib;Bakora, Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.473-495
    • /
    • 2016
  • This work presents a bending, buckling, and vibration analysis of functionally graded plates by employing a novel higher-order shear deformation theory (HSDT). This theory has only four unknowns, which is even less than the first shear deformation theory (FSDT). A shear correction coefficient is, thus, not needed. Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.