• Title/Summary/Keyword: new plate theory

Search Result 249, Processing Time 0.023 seconds

A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate

  • Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Bessaim, Aicha
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.547-565
    • /
    • 2016
  • In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory accounts for non-linear in plane displacement and constant transverse displacement through the plate thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is not required. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton's principle. Analytical solutions of natural frequency and critical buckling load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the present non-polynomial plate theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.

A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates

  • Chikr, Sara Chelahi;Kaci, Abdelhakim;Yeghnem, Redha;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.653-673
    • /
    • 2019
  • This work investigates a novel quasi-3D hyperbolic shear deformation theory is presented to discuss the buckling of new type of sandwich plates. This theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements through the thickness. The enhancement of this formulation is due to the use of only five unknowns by including undetermined integral terms, contrary to other theories where we find six or more unknowns. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. A new type of FGM sandwich plates, namely, both FGM face sheets and FGM hard core are considered. The governing equations and boundary conditions are derived using the principle of virtual displacements. Analytical solutions are obtained for a simply supported plate. The accuracy of the present theory is verified by comparing the obtained results with quasi-3D solutions and those predicted by higher-order shear deformation theories. The comparison studies show that the obtained results are not only more accurate than those obtained by higher-order shear deformation theories, but also comparable with those predicted by quasi-3D theories with a greater number of unknowns.

New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.;Jumaat, Mohd. Zamin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.625-642
    • /
    • 2010
  • The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.

Static analysis of functionally graded sandwich plates with porosities

  • Keddouri, Ahemd;Hadji, Lazreg;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.155-177
    • /
    • 2019
  • In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate with new definition of porosity distribution taking into account composition and the scheme of the sandwich plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Material properties of FGM layers are assumed to vary continuously across the plate thickness according to either power-law or sigmoid function in terms of the volume fractions of the constituents. The face layers are considered to be FG across each face thickness while the core is made of a ceramic homogeneous layer. Governing equations are derived from the principle of virtual displacements. The closed-form solution of a simply supported rectangular plate subjected to sinusoidal loading has been obtained by using the Navier method. Numerical results are presented to show the effect of the material distribution, the sandwich plate geometry and the porosity on the deflections and stresses of FG sandwich plates. The validity of the present theory is investigated by comparing some of the present results with other published results.

New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.;Ibrahim, Zainah
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.205-229
    • /
    • 2012
  • This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations ${\theta}_x$ and ${\theta}_y$ are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.

Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory

  • Bourada, Fouad;Amara, Khaled;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1287-1306
    • /
    • 2016
  • The current research presents a buckling analysis of isotropic and orthotropic plates by proposing a new four variable refined plate theory. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only four variables. The governing equations for buckling analysis are deduced by utilizing the principle of virtual works. The analytical solution of a simply supported rectangular plate under the axial loading has been determined via the Navier method. Numerical investigations are performed by using the proposed model and the obtained results are compared with CPT solutions, FSDT solutions, and the existing exact solutions in the literature. It can be concluded that the developed four variable refined plate theory, which does not use shear correction coefficient, is not only simple but also comparable to the FSDT.

Bending analysis of FGM plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.543-558
    • /
    • 2016
  • The response of functionally graded ceramic-metal plates is investigated using theoretical formulation, Navier's solutions, and a new displacement based on the high-order shear deformation theory are presented for static analysis of functionally graded plates. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. Numerical results of the new refined plate theory are presented to show the effect of the material distribution on the deflections, stresses and fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the static and free vibration behavior of functionally graded plates.

A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Yeghnem, Redha;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 2018
  • This work investigates a novel plate formulation and a modified couple stress theory that introduces a variable length scale parameter is presented to discuss the static and dynamic of functionally graded (FG) micro-plates. A new type of third-order shear deformation theory of Reddy that use only 4 unknowns by including undetermined integral variables is proposed in this study. The equations of motion are derived from Hamilton's principle. Analytical solutions are obtained for a simply supported micro-plate. Numerical examples are presented to examine the effect of the length scale parameter on the responses of micro-plates. The obtained results are compared with the previously published results to demonstrate the correctness of the present formulation.

A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position

  • Merazi, M.;Hadji, L.;Daouadji, T.H.;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.305-321
    • /
    • 2015
  • In this paper, a new hyperbolic shear deformation plate theory based on neutral surface position is developed for the static analysis of functionally graded plates (FGPs). The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present new hyperbolic shear deformation plate theory and the neutral surface concept, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.485-502
    • /
    • 2009
  • A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.