• Title/Summary/Keyword: new numerical procedure

Search Result 290, Processing Time 0.033 seconds

A novel approximate solution for nonlinear problems of vibratory systems

  • Edalati, Seyyed A.;Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1039-1049
    • /
    • 2016
  • In this research, an approximate analytical solution has been presented for nonlinear problems of vibratory systems in mechanical engineering. The new method is called Variational Approach (VA) which is applied in two different high nonlinear cases. It has been shown that the presented approach leads us to an accurate approximate analytical solution. The results of variational approach are compared with numerical solutions. The full procedure of the numerical solution is also presented. The results are shown that the variatioanl approach can be an efficient and practical mathematical tool in field of nonlinear vibration.

Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems

  • Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.657-661
    • /
    • 2017
  • In this paper, it has been tried to propose a new semi analytical approach for solving nonlinear vibration of conservative systems. Hamiltonian approach is presented and applied to high nonlinear vibration systems. Hamiltonian approach leads us to high accurate solution using only one iteration. The method doesn't need any small perturbation and sufficiently accurate to both linear and nonlinear problems in engineering. The results are compared with numerical solution using Runge-Kutta-algorithm. The procedure of numerical solution are presented in detail. Hamiltonian approach could be simply apply to other powerfully non-natural oscillations and it could be found widely feasible in engineering and science.

Transient Linear Elastodynamic Analysis by the Finite Element Method (유한요소법을 이용한 과도 선형 동탄성 해석)

  • Hwang, Eun-Ha;Oh, Guen
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2009
  • A new finite element equation is derived by applying quadratic and cubic time integration scheme to the variational formulation in time-integral for the analysis of the transient elastodynamic problems to increase the numerical accuracy and stability. Emphasis is focused on methodology for cubic time integration scheme procedure which are never presented before. In this semidiscrete approximations of the field variables, the time axis is divided equally and quadratic and cubic time variation is assumed in those intervals, and space is approximated by the usual finite element discretization technique. It is found that unconditionally stable numerical results are obtained in case of the cubic time variation. Some numerical examples are given to show the versatility of the presented formulation.

  • PDF

Behavior of Geotextile Tube by Numerical Analysis (수치해석기법을 이용한 지오텍스타일 튜브의 거동분석)

  • 신은철;오영인;조인휘
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.385-392
    • /
    • 2003
  • Traditional forms of river and coastal structures have become very expensive to build and maintain, because of the shortage of natural rock. Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. In this study, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of geotextile and hydraulic pumping conditions. Numerical analysis was executed to compare with the results from the large-scale field model tests, and also compared the results of 2-D plane strain analysis and 3-D FEM analysis. A geotextile tube was modeled using the commercial finite element analysis program ABAQUS and the one-quarter of tube was modeled. Behavior of geotextile tube during the hydraulic pumping procedure was analyzed by comparing the large-scale field model test and numerical analysis. The shape variation and maximum tube height between the numerical analysis results and large-scale filed test results are turned out to be a good agreement.

  • PDF

A numerical method for buckling analysis of built-up columns with stay plates

  • Djafour, M.;Megnounif, A.;Kerdal, D.;Belarbi, A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.441-457
    • /
    • 2007
  • A new numerical model based on the spline finite strip method is presented here for the analysis of buckling of built-up columns with and without end stay plates. The channels are modelled with spline finite strips while the connecting elements are represented by a 3D beam finite element, for which the stiffness matrix is modified in order to ensure complete compatibility with the strips. This numerical model has the advantage to give all possible failure modes of built-up columns for different boundary conditions. The end stay plates are also taken into account in this method. To validate the model a comparative study was carried out. First, a general procedure was chosen and adopted. For each numerical analysis, the lowest buckling loads and modes were calculated. The basic or "pure" buckling modes were identified and their critical loads were compared with solutions obtained using analytical methods and/or other numerical methods. The results showed that the proposed numerical model can be used in practice to study the elastic buckling of built-up columns. This model is considered accurate and efficient for the local buckling of short columns and global buckling for slender columns.

DEVELOPMENT OF A NUMERICAL SIMULATION METHOD FOR THE ANALYSIS OF SLOSHING PROBLEMS BASED ON CCUP SCHEME (슬로싱 해석을 위한 CCUP 기반 시뮬레이션 기술 개발)

  • Park, J.C.;Hwang, S.C.;Jeong, S.M.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • A new computational program, which is based on the CIP/CCUP(Constraint Interpolation Profile/CIP Combined Unified Procedure) method, has been developed to numerically analyse sloshing phenomena dealt as multiphase-flow problems. For the convection terms of Navier-Stokes equations, the RCIP(Rational function CIP) method was adopted and the THINC-WLIC(Tangent of Hyperbola for Interface Capturing-Weighted Line Interface Calculation) method was used to capture the air/water interface. To validate the present numerical method, two-dimensional dam-breaking and sloshing problems in a rectangular tank were solved by the developed method in a stationary Cartesian grid system. In the case of sloshing problems, simulations by using a improved MPS(Moving Particle Simulation) method, which is named as PNU-MPS(Pusan National University-MPS), were also carried out. The computational results are compared with those of experiments and most of the comparisons are reasonably good.

Numerical Prediction of Steady and Unsteady Performances of Contrarotating Propellers

  • Lee, Chang-Sup;Kim, Young-Gi;Baek, Myung-Chul;Yoo, Jae-Hoon
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.29-40
    • /
    • 1995
  • This paper describes the procedure to predict steady and unsteady performances of a contrarotating propeller(CRP) by a mixed formulation of the boundary value problem(BVP) far the flow around a CRP. The blade BVP is treated by a classical vortex lattice method, whereas the hub BVP is solved by a potential-based panel method. Blades and trailing wakes are represented by a vortex and/or source lattice system, and hubs are represented by normal dipole and source distributions. Both forward and aft propellers are solved simultaneously, thus treating the interaction effect without iteration. The unsteady performance is computed directly in time domain. The new numerical procedure requires a large amount of storage and computing time, which is however no longer a limit in a modern computer system. Sample computations show that the steady performance compares very well with the experiments. The predicted unsteady behavior shows that the dominant harmonics of the total forces are multiples of not only the number of blades of the forward and aft propellers but also the product of both blade numbers. The magnitude of the latter harmonics, present also in uniform oncoming flow, may reach abort 50% of the mean torque for the aft propeller, which in turn may cause a serious vibration problem in the complicated contrarotating shafting system.

  • PDF

THE METHOD OF NONFLAT TIME EVOLUTION (MONTE) IN PDE-BASED IMAGE RESTORATION

  • Cha, Youngjoon;Kim, Seongjai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.961-971
    • /
    • 2012
  • This article is concerned with effective numerical techniques for partial differential equation (PDE)-based image restoration. Numerical realizations of most PDE-based denoising models show a common drawback: loss of fine structures. In order to overcome the drawback, the article introduces a new time-stepping procedure, called the method of nonflat time evolution (MONTE), in which the timestep size is determined based on local image characteristics such as the curvature or the diffusion magnitude. The MONTE provides PDE-based restoration models with an effective mechanism for the equalization of the net diffusion over a wide range of image frequency components. It can be easily applied to diverse evolutionary PDE-based restoration models and their spatial and temporal discretizations. It has been numerically verified that the MONTE results in a significant reduction in numerical dissipation and preserves fine structures such as edges and textures satisfactorily, while it removes the noise with an improved efficiency. Various numerical results are shown to confirm the claim.

Numerical and experimental simulation of the wind field in the EXPO '98 area

  • Ferreira, A.D.;Sousa, A.C.M.;Viegas, D.X.
    • Wind and Structures
    • /
    • v.1 no.4
    • /
    • pp.337-349
    • /
    • 1998
  • A numerical and experimental study was performed for the wind flow field in one area, comprising a group of several pavilions separated by passageways, of the EXPO '98 - a World Exposition (Lisbon, Portugal). The focus of this study is the characterization of the flow field to assess pedestrian comfort. The predictions were obtained employing the Reynolds averaged Navier-Stokes equations with the turbulence effects dealt with the ${\kappa}-{\varepsilon}$ RNG model. The discretization of the differential equations was accomplished with the control volume formulation in a Cartesian coordinate system, and an advanced segregated procedure was used to achieve the link between continuity and momentum equations. The evaluation of the overall numerical model was performed by comparing its predictions against experimental data for a square cylinder placed in a channel. The predicted values, for the practical geometry studied, are in a good agreement with the experimental data, showing the performance and the reliability of the ${\kappa}-{\varepsilon}$ RNG model and suggesting that the numerical simulation is a reliable methodology to provide the required information.

Robust sliding mode control of nonlinear uncertain system via geometric approach (기하학적 접근에 의한 비선형 불확실성 시스템에 대한 강건한 슬라이딩 모드 제어)

  • 박동원;김우철;김정식;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1213-1218
    • /
    • 1993
  • Variable structure control is applied to the robust output tracking control problem of general nonlinear multi-input multi-output (MIMO) systems. Using the concept of relative degree and minimum phase, input/output(I/O) linearization is undertaken. For I/O the linearized system, a new sliding hyperplanes design method is proposed. In this procedure, we can construct very robust and efficient sliding mode controller for general nonlinear systems of relative degree higher than two. The control results are illustrated by adopting a numerical example.

  • PDF