• 제목/요약/키워드: new drugs

검색결과 968건 처리시간 0.031초

새로운 해열, 진통, 소염제인 HP228의 단독 또는 Morphine과의 병용투여가 제통효과에 미치는 영향 (Effects of HP228 on Analgesia Alone or in Combination with Morphine)

  • 이승구;이승훈;김태성;김현수;김광민
    • The Korean Journal of Pain
    • /
    • 제12권1호
    • /
    • pp.64-69
    • /
    • 1999
  • Background: The new drug HP228 is a cytokine restraining agent with a broad spectrum of anti-inflammatory, analgesic, and antipyretic activity. Six healthy, adult, male volunteers were studied to determine the independent and interactive effects of HP228 and morphine on pain perception. Methods: Two groups of stimuli were applied to each volunteers before drug administration as control, 20 min after morphine and HP228 administration, and 20 min after combined administration of these two drugs. Two adhesive electrically-conducting pads were applied on opposite sides of the arm approximately 8 cm apart. The electrode were connected to an electrical impulse generator and 50 Hz 1 msec pulses of incrementally increasing intensity were delivered at 1 sec intervals. The analgesic endpoints were the current intensity (mA) at which the subject first detected the stimulus (THRESH), the intensity at which the stimulus was first idenfied as being painful (PAIN), and the intensity at which the subject requested that the stimulus be terminated due to discomfort (LIMIT). A second series of stimuli were applied immediately thereafter using 1-sec duration 50 Hz tetanus pulses with increasing intensities at 2~5 sec intervals. Results: There were significant differences between drug treatments (Morphine, HP228, HP228/Morphine) and control (No drugs) in any of the measurements (PAIN, LIMIT) except THRESH with the twitch and tetanus test. Conclusions: The data suggests that HP228 is an analgesic, but it does not appear to interact with morphine in an additive manner.

  • PDF

Cloning and Expression of Isocitrate Lyase, a Key Enzyme of the Glyoxylate Cycle, of Candida albicans for Development of Antifungal Drugs

  • SHIN DONG-SUN;KIM SANGHEE;YANG HYEONG-CHEOL;OH KI-BONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.652-655
    • /
    • 2005
  • This paper describes the development of an enzymatic assay system for the identification of inhibitors of isocitrate lyase (ICL), one of the key enzymes of the glyoxylate cycle that is considered as a new target for antifungal drugs. A 1.6 kb DNA fragment encoding the isocitrate lyase from Candida albicans ATCC10231 was amplified by PCR, cloned into a vector providing His-Patch-thioredoxin-tag at the N-terminus, expressed in Escherichia coli, and purified by metal chelate affinity chromatography. The molecular mass of the purified ICL was approximately 62 kDa, as determined by SDS-PAGE, and the enzyme activity was directly proportional to incubation time and enzyme concentration. The effects of itaconate-related compounds on ICL activity were also investigated. Among them, itaconic acid, 3-nitropropionate, and oxalate had strong inhibitory activities with $IC_{50}$ values of 5.8, 5.4 and $8.6\;{mu}g/ml$, respectively. These inhibitors also exhibited antifungal activity on YPD agar media containing acetate as a sole carbon source, albeit at high concentration. The results indicate that the C. albicans ICL may be a regulatory enzyme playing a crucial role in fungal growth and is a prime target for antifungal agents.

Anti-Helicobacter pylori Properties of GutGardTM

  • Kim, Jae Min;Zheng, Hong Mei;Lee, Boo Yong;Lee, Woon Kyu;Lee, Don Haeng
    • Preventive Nutrition and Food Science
    • /
    • 제18권2호
    • /
    • pp.104-110
    • /
    • 2013
  • Presence of Helicobacter pylori is associated with an increased risk of developing upper gastrointestinal tract diseases. Antibiotic therapy and a combination of two or three drugs have been widely used to eradicate H. pylori infections. Due to antibiotic resistant drugs, new drug resources are needed such as plants which contain antibacterial compounds. The aim of this study was to investigate the ability of GutGard$^{TM}$ to inhibit H. pylori growth both in Mongolian gerbils and C57BL/6 mouse models. Male Mongolian gerbils were infected with the bacteria by intragastric inoculation ($2{\times}10^9$ CFU/gerbil) 3 times over 5 days and then orally treated once daily 6 times/week for 8 weeks with 15, 30 and 60 mg/kg GutGard$^{TM}$. After the final administration, biopsy samples of the gastric mucosa were assayed for bacterial identification via urease, catalase and ELISA assays as well as immunohistochemistry (IHC). In the Mongolian gerbil model, IHC and ELISA assays revealed that GutGard$^{TM}$ inhibited H. pylori colonization in gastric mucosa in a dose dependent manner. The anti-H. pylori effects of GutGard$^{TM}$ in H. pylori-infected C57BL/6 mice were also examined. We found that treatment with 25 mg/kg GutGard$^{TM}$ significantly reduced H. pylori colonization in mice gastric mucosa. Our results suggest that GutGard$^{TM}$ may be useful as an agent to prevent H. pylori infection.

전기방사된 나노파이버 매트를 이용한 약물전달시스템에 관한 연구 (Drug Delivery System Using Electrospun Nanofiber Mats)

  • 윤현;박윤경;김근형
    • 폴리머
    • /
    • 제33권3호
    • /
    • pp.219-223
    • /
    • 2009
  • 전기방사 공정을 이용하여 제조된 나노파이버는 나노 소자, 필터, 방호닦, 항균성 드레싱 및 약물전달 등 다양한 분야에서 이용되고 있다. 약물전달시스템(drug delivery system, DDS)은 기존 의약품의 부작용을 최소화하며 그 효능 및 효과를 극대화할 수 있어야 하고 필요한 양의 약물을 원하는 환부에 효율적으로 전달할 수 있어야 한다. 본 연구에서는 전기유체역학공정의 하나인 전기방사공정을 이용하여, poly($\varepsilon$-carprolactone)(PCL) poly(ethylene oxide(PEO)를 나노파이버 매트로 만들었으며, 고분자와 동시 방사된 Rhodamine B의 방출량을 측정하였다. PCL/Rhodamine B/PEO/PCL 나노파이버 매트는 전기방사 시간을 통한 두께 조절을 통하여 약물전달 거동이 조절될 수 있음을 확인하였으며, 실제 Peptide를 PEO와 동시 전기방사시켜 얻어진 나노파이버 peptide가 방출되는 거동을 확인하였다. PCL/Peptide/PEO/PCL시스템에서 방출된 peptide는 약물방출 시험 후에도 약물로서의 활성도를 잃지 않았으며, 이러한 나노파이버를 이용한 Peptide 방출메커니즘은 새로운 약물전달시스템으로 적용 및 응용될 수 있을 것으로 예상된다.

Improved Production of Medium-Chain-Length Polyhydroxyalkanoates in Glucose-Based Fed-Batch Cultivations of Metabolically Engineered Pseudomonas putida Strains

  • Poblete-Castro, Ignacio;Rodriguez, Andre Luis;Lam, Carolyn Ming Chi;Kessler, Wolfgang
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.59-69
    • /
    • 2014
  • One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains that can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch strategies in the performance of metabolically engineered Pseudomonas putida strains, ${\Delta}gcd$ and ${\Delta}gcd-pgl$, for improving production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glucose as the only carbon source. First we developed a fed-batch process that comprised an initial phase of biomass accumulation based on an exponential feeding carbon-limited strategy. For the mcl-PHA accumulation stage, three induction techniques were tested under nitrogen limitation. The substrate-pulse feeding was more efficient than the constant-feeding approach to promote the accumulation of the desirable product. Nonetheless, the most efficient approach for maximum PHA synthesis was the application of a dissolved-oxygen-stat feeding strategy (DO-stat), where P. putida ${\Delta}gcd$ mutant strain showed a final PHA content and specific PHA productivity of 67% and $0.83g{\cdot}l^{-1}{\cdot}h^{-1}$, respectively. To our knowledge, this mcl-PHA titer is the highest value that has been ever reported using glucose as the sole carbon and energy source. Our results also highlighted the effect of different fed-batch strategies upon the extent of realization of the intended metabolic modification of the mutant strains.

Human Topoisomerase I-DNA 절개가능 복합체에 대한 Indenoisoquinoline 유도체들의 결합양상 연구 (Binding Mode Studies of Indenoisoquinoline Analogues into Human Topoisomerase I-DNA Complex Using Flexible Docking)

  • 박인선;김보연;김춘미;최선
    • 약학회지
    • /
    • 제53권4호
    • /
    • pp.228-234
    • /
    • 2009
  • Topoisomerase I (Topo I) participates in the DNA replication, transcription, and repair. Binding of Topo I inhibitor to the Topo I-DNA cleavage complex forms stabilized ternary complex which blocks DNA religation and ultimately causes cell death. Camptothecin (CPT) and its derivatives have been among the most effective anticancer drugs by inhibition of topo I. However, efforts to synthesize non-CPT drugs have been actively going on because the CPT derivatives have several limitations such as poor solubility, short half-life, and side effects. As an indenoisoquinoline, NSC314622 is not as potent as CPT, but its chemical stability and slower reversibility of the cleavage complex made it a good lead compound. Recently, a series of indenoisoquinoline analogues were synthesized with substituted dimethoxy or methylenedioxy on the aromatic ring and alkylamino on the lactam nitrogen. Some of them showed quite good Topo I inhibitory activity. Using the computer docking program, Surflex-Dock, indenoisoquinoline analogues were docked into the human Topo I-DNA cleavable complex. The docking results showed that the compounds with activity better than NSC314622 intercalated between the -1 and +1 base pairs at the cleavage site, but those with little or no activities did not appear to intercalate. These results could be useful to design new Topo I inhibitors improved than CPT.

Antiviral Activity of the Plant Extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii Against Influenza Virus A/PR/8/34

  • Won, Ji-Na;Lee, Seo-Yong;Song, Dae-Sub;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.125-130
    • /
    • 2013
  • Influenza viruses cause significant morbidity and mortality in humans through epidemics or pandemics. Currently, two classes of anti-influenza virus drugs, M2 ion-channel inhibitors (amantadin and rimantadine) and neuraminidase inhibitors (oseltamivir and zanamivir), have been used for the treatment of the influenza virus infection. Since the resistance to these drugs has been reported, the development of a new antiviral agent is necessary. In this study, we examined the antiviral efficacy of the plant extracts against the influenza A/PR/8/34 infection. In vitro, the antiviral activities of the plant extracts were investigated using the cell-based screening. Three plant extracts, Thuja orientalis, Aster spathulifolius, and Pinus thunbergii, were shown to induce a high cell viability rate after the infection with the influenza A/PR/8/34 virus. The antiviral activity of the plant extracts also increased as a function of the concentration of the extracts and these extracts significantly reduced the visible cytopathic effect caused by virus infections. Furthermore, the treatment with T. orientalis was shown to have a stronger inhibitory effect than that with A. spathulifolius or P. thunbergii. These results may suggest that T. orientalis has anti-influenza A/PR/8/34 activity.

Modeling and Simulation of Scheduling Medical Materials Using Graph Model for Complex Rescue

  • Lv, Ming;Zheng, Jingchen;Tong, Qingying;Chen, Jinhong;Liu, Haoting;Gao, Yun
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1243-1258
    • /
    • 2017
  • A new medical materials scheduling system and its modeling method for the complex rescue are presented. Different from other similar system, first both the BeiDou Satellite Communication System (BSCS) and the Special Fiber-optic Communication Network (SFCN) are used to collect the rescue requirements and the location information of disaster areas. Then all these messages will be displayed in a special medical software terminal. After that the bipartite graph models are utilized to compute the optimal scheduling of medical materials. Finally, all these results will be transmitted back by the BSCS and the SFCN again to implement a fast guidance of medical rescue. The sole drug scheduling issue, the multiple drugs scheduling issue, and the backup-scheme selection issue are all utilized: the Kuhn-Munkres algorithm is used to realize the optimal matching of sole drug scheduling issue, the spectral clustering-based method is employed to calculate the optimal distribution of multiple drugs scheduling issue, and the similarity metric of neighboring matrix is utilized to realize the estimation of backup-scheme selection issue of medical materials. Many simulation analysis experiments and applications have proved the correctness of proposed technique and system.

Cytotoxic Effect of Bee (A. mellifera) Venom on Cancer Cell Lines

  • Borojeni, Sima Khalilifard;Zolfagharian, Hossein;Babaie, Mahdi;Javadi, Iraj
    • 대한약침학회지
    • /
    • 제23권4호
    • /
    • pp.212-219
    • /
    • 2020
  • Objectives: Nowadays cancer treatment is an important challenge in the medical world that needs better therapies. Many active secretions produced by insects such as honey bees used to discover new anticancer drugs. Bee venom (BV) has a potent anti inflammatory, anti cancer and tumor effects. The aim of present study is evaluation of anticancer effects induced by Apis mellifera venom (AmV) on cell Lines. Methods: AmV was selected for study on cancer cell lines. Total protein, molecular weight and LD50 of crude venom were determined. Then, cells were grown in Dulbecco's Modified Eagle medium supplemented with 10% fetal bovine serum and 1% antibiotics. The A549, HeLa and MDA-MB-231 cell Lines were exposed by different concentration of AmV. The morphology of cells was determined and cell viability was studed by MTT assay. Evaluation of cell death was determined by and DNA fragmentation. Results: The results from MTT assay showed that 3.125 ㎍/mL of A549, 12.5 for HeLa and 6.25 ㎍/mL of MDA-MB-231 killed 50% of cells (p < 0.05). Morphological analysis and the results from hoescht staining and DNA fragmentation indicated that cell death induced by AmV was significantly apoptosis. Conclusion: The data showed that using lower dosage of AmV during treatment period cause inhibition of proliferation in time and dose dependant manner. Findings indicated that some ingredients of AmV have anticancer effects and with further investigation it can be used in production of anticancer drugs.

고지방식이(高脂肪食餌)로 유도된 동물모델에서 백수오(白首烏)의 항비만(抗肥滿) 효과 (Anti-obesity effect of Cynanchi Wilfordii Radix on High fat diet-induced obese mice)

  • 오양팡란;서부일
    • 대한본초학회지
    • /
    • 제34권2호
    • /
    • pp.49-58
    • /
    • 2019
  • Objectives : Obesity is a public health concern associated with chronic diseases including hyperlipidemia, diabetes, fatty liver, atherosclerosis and cancer. As several anti-obesity drugs have been limited owing to their side effects, the development of new anti-obesity drugs through herbal medicines has been increasing. Cynanchum Wilfordii Radix (CW) traditionally is consumed for various health benefits including immune enhancing, anti-inflammation and anti-tumor activities. The aim of the present study is to evaluate the effects of CW on High fat diet (HFD)-induced obese mice. Methods : The mice were randomly divided into four groups (n=7). The mice were respectively fed a normal diet (ND), a high-fat diet (HFD), HFD plus CW (50 mg/kg/day), HFD plus CW (100 mg/kg/day). All groups were assayed for body weights, food efficiency ratio, blood biochemistry parameters, and organic tissue weights. Results : HFD-fed mice showed an increase in the body weight and serum biochemistry parameters levels (total cholesterol and triglycerides) as well as organic tissue weights. However, the administration of CW to obese mice induced a reduction in their body weight, food efficiency ratio, blood biochemistry parameters and weight of liver and fat compared with the HFD fed mice. Additionally, we observed that CW inhibited the lipid accumulation in liver and serum lipid parameter induced by HFD. Conclusions : Taken together, the findings of this study suggest that CW may be a potential agent for use in the treatment of obesity and obesity-related metabolic diseases.