• Title/Summary/Keyword: new bridge system

Search Result 508, Processing Time 0.022 seconds

Piecewise exact solution for seismic mitigation analysis of bridges equipped with sliding-type isolators

  • Tsai, C.S.;Lin, Yung-Chang;Chen, Wen-Shin;Chiang, Tsu-Cheng;Chen, Bo-Jen
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.205-215
    • /
    • 2010
  • Recently, earthquake proof technology has been widely applied to both new and existing structures and bridges. The analysis of bridge systems equipped with structural control devices, which possess large degrees of freedom and nonlinear characteristics, is a result in time-consuming task. Therefore, a piecewise exact solution is proposed in this study to simplify the seismic mitigation analysis process for bridge systems equipped with sliding-type isolators. In this study, the simplified system having two degrees of freedom, to reasonably represent the large number of degrees of freedom of a bridge, and is modeled to obtain a piecewise exact solution for system responses during earthquakes. Simultaneously, we used the nonlinear finite element computer program to analyze the bridge responses and verify the accuracy of the proposed piecewise exact solution for bridge systems equipped with sliding-type isolators. The conclusions derived by comparing the results obtained from the piecewise exact solution and nonlinear finite element analysis reveal that the proposed solution not only simplifies the calculation process but also provides highly accurate seismic responses of isolated bridges under earthquakes.

High Efficiency Half-bridge DC-DC Converter for an LED Backlight Drive System of LCD Module Inspection Equipment (LCD 모듈 검사장비용 LED 백라이트 드라이브 시스템을 위한 고효율 반브리지 직류-직류 전력변환기)

  • Yoo, Doo-Hee;Jeong, Gang-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.535-542
    • /
    • 2008
  • This paper presents a high efficiency half-bridge DC-DC converter for an LED backlight drive system of LCD module inspection equipment. The proposed converter improves the converter efficiency using characteristics of the asymmetrical half-bridge converter and the self-driven synchronous rectifier, and thus improves the total efficiency of the LED backlight drive system. The synchronous rectifier applied to the proposed converter is the new topological synchronous rectifier, which changes slightly the transformer structure and the synchronous switch connection in the asymmetrical half-bridge converter with a conventional self-driven synchronous rectifier. Since the proposed converter utilizes the transformer leakage inductor as its resonant inductor, its structure is simplified. The proposed converter well operates under the universal DC input voltage ($250{\sim}380V$). The operational principle and a design example for a 100W prototype are discussed in detail, respectively. Experimental results are shown for the designed prototype converter under universal DC input voltage.

Development of Measuring Method for Bridge Scour and Water Level Using Temperature Difference Between Medium Interfaces (매질 경계면의 온도 변화를 이용한 교량 세굴 및 수위 측정방법 개발)

  • Joo, Bong-Chul;Park, Ki-Tae;You, Young-Jun;Hwang, Yoon-Koog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.126-133
    • /
    • 2014
  • The main source of bridge destruction is due to scour. The bridge scour is the result of erosive action of flowing water taking away ground materials from near the abutment or pier. Furthermore, the water level must be also monitored whiling flooding, because it dangers not only the stability of bridge itself, but the safety of bridge users. This study is intended to develop a new measuring system for bridge scour by overcoming the current limitation of scour measurement technique. This measuring system is confirmed its excellence and validity through this study. The newly developed measuring system finds the distance between the water surface and the ground surface by detecting temperature difference along the abutment vertically. The measuring mechanism for monitoring the bridge scour and water level is based on identifying the temperature difference among mediums, including air, water and ground. In order to validate the new measuring system, the lab experiments and the field tests are conducted and compared. It has been confirmed that this system can effectively measure the bridge scour and the water level by analyzing the temperature distribution between mediums and the temperature variation over time.

A NEW POST REMOVAL TECHNIQUE USING ATD TUGGING DEVICE (ATD automatic bridge remover를 이용한 새로운 포스트 제거 방법)

  • Park, Yun-Woo;Park, Se-Hee;Shin, Hye-Jin;Cho, Kyung-Mo;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.215-220
    • /
    • 2005
  • It is common for clinicians to encounter endodontically tl·treated teeth that contain posts within their roots. If endodontic treatment is failed, these posts must be removed to facilitate successful nonsurgical retreatment. There have been many techniques such as ultrasonic instrument, Ruddle post removal system, Eggler post remover and Masserann kit developed to facilitate removal of posts from the root canal space. But these methods may be disadvantageous because long length of time required for post removal and fracture of post or teeth. In now days new post removal technique using ATD automatic bridge remover was introduced. Advantages of this method are simple and short time consuming compare to others. This article served as a successful case report of post removal using ATD automatic bridge remover.

Hilbert transform based approach to improve extraction of "drive-by" bridge frequency

  • Tan, Chengjun;Uddin, Nasim
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.265-277
    • /
    • 2020
  • Recently, the concept of "drive-by" bridge monitoring system using indirect measurements from a passing vehicle to extract key parameters of a bridge has been rapidly developed. As one of the most key parameters of a bridge, the natural frequency has been successfully extracted theoretically and in practice using indirect measurements. The frequency of bridge is generally calculated applying Fast Fourier Transform (FFT) directly. However, it has been demonstrated that with the increase in vehicle velocity, the estimated frequency resolution of FFT will be very low causing a great extracted error. Moreover, because of the low frequency resolution, it is hard to detect the frequency drop caused by any damages or degradation of the bridge structural integrity. This paper will introduce a new technique of bridge frequency extraction based on Hilbert Transform (HT) that is not restricted to frequency resolution and can, therefore, improve identification accuracy. In this paper, deriving from the vehicle response, the closed-form solution associated with bridge frequency removing the effect of vehicle velocity is discussed in the analytical study. Then a numerical Vehicle-Bridge Interaction (VBI) model with a quarter car model is adopted to demonstrate the proposed approach. Finally, factors that affect the proposed approach are studied, including vehicle velocity, signal noise, and road roughness profile.

Efficient Control Method of ZVS Full-bridge PWM Converter with Pulse Load Current (펄스형 부하에서 ZVS Full-bridge PWM 컨버터의 효율 증대를 위한 제어 방법)

  • 김정원
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.404-408
    • /
    • 2000
  • The novel control method of ZVS Full-bridge PWM converter with pulse load current is proposed. This new control method can reduce the switching loss of switches during no load condition. Moreover by using feed-forward load current information this method can obtain better transient dynamics compared to the system with only linear feedback control.

  • PDF

Suppression of bridge flutter by passive aerodynamic control method (교량 플러터의 공기역학적 수동제어)

  • Kwon S.-D.;Jung S.;Chang S.-P.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.435-438
    • /
    • 2002
  • In this study, a new passive aerodynamic control method is proposed. Control plate which is oscillated by TMD-like mechanism makes flutter stabilizing airflow. Effectiveness of proposed model is verified by experimental and analytical study. In addition, various parameters of the proposed system are investigated. Applicability to long span bridge is also examined. According to the research results, proposed model is very effective in suppressing flutter, and it also shows remarkable robustness.

  • PDF

Structural Performance of an Advanced Compsites Bridge Superstructure for Rapid Installation (급속시공용 복합신소재 교량상부구조의 구조 성능)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.34-45
    • /
    • 2010
  • This paper describes the design, manufacturing process, testing, application, and assessment of capacity-ratings of the first all advanced composites bridge on a public highway system. In order to verify the bridge design prior to the field application, a sub-scale bridge superstructure was built and tested in the laboratory. The field load test results were compared with those of the finite element analysis for the verification of validity. To investigate its in-service performance, field load testing and visual inspections were conducted under an actual service environment. The paper includes the presentation and discussion for advanced composites bridge capacity rating based on the stress modification coefficients obtained from the test results. The test result indicates that the advanced composites bridge has no structural problems and is structurally performing well in-service as expected. Since these composite materials are new to bridge applications, reliable data is not available for their in-service performance. The results may provide a baseline data for future field advanced composites bridge capacity rating assessments and also serve as part of a long-term performance of advanced composites bridge.

  • PDF

Impact factors of an old bridge under moving vehicular loads

  • Liu, Yang;Yin, Xinfeng;Zhang, Jianren;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.353-370
    • /
    • 2013
  • This paper presents a new method to study the impact factor of an old bridge based on the model updating technique. Using the genetic algorithm (GA) by minimizing an objective function of the residuals between the measured and predicted responses, the bridge and vehicle coupled vibration models were updated. Based on the displacement relationship and the interaction force relationship at the contact patches, the vehicle-bridge coupled system can be established by combining the equations of motion of both the bridge and vehicles. The simulated results show that the present method can simulate precisely the response of the tested bridge; compared with the other bridge codes, the impact factor specified by the bridge code of AASHTO (LRFD) is the most conservative one, and the value of Chinese highway bridge design code (CHBDC) is the lowest; for the large majority of old bridges whose road surface conditions have deteriorated, calculating the impact factor with the bridge codes cannot ensure the reliable results.

Vibration analysis of prestressed concrete bridge subjected to moving vehicles

  • Huang, M.;Liu, J.K.;Law, S.S.;Lu, Z.R.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.273-289
    • /
    • 2011
  • The vibration response of the bridges under the moving vehicular load is of importance for engineers to estimate the serviceability of existing bridges and to design new bridges. This paper deals with the three dimensional vibration analysis of prestressed concrete bridges under moving vehicles. The prestressed bridges are modeled by four-node isoparametric flat shell elements with the transverse shearing deformation taken into account. The usual five degrees-of-freedom (DOFs) per node of the element are appended with a drilling DOF to accommodate the transformation of the local stiffness and mass matrices to the global coordinates. The vehicle is modeled as a single or two-DOF system. A single-span prestressed Tee beam and two-span prestressed box-girder bridge are studied as the two numerical examples. The effects of prestress forces on the natural frequencies and dynamic responses of the bridges are investigated.