• Title/Summary/Keyword: new bone

Search Result 1,343, Processing Time 0.029 seconds

Evaluation of the Healing Process of Autogenous Tooth Bone Graft Material Nine Months after Sinus Bone Graft: Micromorphometric and Histological Evaluation

  • Kim, Young-Kyun;Jun, Sang-Ho;Um, In-Woong;Kim, Sooyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.5
    • /
    • pp.310-315
    • /
    • 2013
  • Micromorphometric and histological examinations were conducted with a collected tissue specimen nine months after sinus bone graft using autogenous tooth bone graft material (AutoBT). As a result of micro-computed tomographic analysis, the total bone volume (graft material+new bone) was 76.45%, and the proportion of new bone was 45.4%. The bone mineral density and the average Hounsfield Unit of new bone were 0.26 and 1,164.69, respectively. The histological examination showed that AutoBT particles were united well with new bone. AutoBT was considered to have excellent bone healing ability after sinus graft and bone density that can resist repneumatization.

Comparative study of new bone formation capability of zirconia bone graft material in rabbit calvarial

  • Kim, Ik-Jung;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.167-176
    • /
    • 2018
  • PURPOSE. The purpose of this study was to compare the new bone formation capability of zirconia with those of other synthetic bone grafts. MATERIALS AND METHODS. Twelve rabbits were used and four 6-mm diameter transcortical defects were formed on each calvaria. Each defect was filled with Osteon II (Os), Tigran PTG (Ti), and zirconia (Zi) bone grafts. For the control group, the defects were left unfilled. The rabbits were sacrificed at 2, 4, and 8 weeks. Specimens were analyzed through micro computed tomography (CT) and histomorphometric analysis. RESULTS. The Ti and Zi groups showed significant differences in the amount of newly formed bone between 2 and 4 weeks and between 2 and 8 weeks (P<.05). The measurements of total bone using micro CT showed significant differences between the Os and Ti groups and between the Os and Zi groups at 2 and 8 weeks (P<.05). Comparing by week in each group, the Ti group showed a significant difference between 4 and 8 weeks. Histomorphometric analysis also showed significant differences in new bone formation between the control group and the experimental groups at 2, 4, and 8 weeks (P<.05). In the comparison of newly formed bone, significant differences were observed between 2 and 4 weeks and between 2 and 8 weeks (P<.05) in all groups. CONCLUSION. Zirconia bone graft material showed satisfactory results in new bone formation and zirconia could be used as a new synthetic bone graft material.

Comparison of Efficacy of New Bone Formation According to Implant Treatment in Xenograft Transplanted for Experimental Bone Defects of Rabbits (토끼 실험적 골 결손부에 이식한 이종 이식골편의 처리방법에 따른 신생골 형성능력 비교)

  • Song, Ha-Na;Lee, Jong-Il
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.350-357
    • /
    • 2007
  • Bone graft had been widely investigated for reconstruction of bone defects or acceleration of bone healing in orthopedics, neurosurgery and dental surgery. Autograft is the golden standard of bone graft but it is associated with donor site morbidity and is restricted in quantity. Xenograft has been researched an alternative method for autograft. The purpose of this study was to investigate the efficacy of new bone formation according to three different preparations of implants on rabbit xenograft. Cortical bone xenografts which made from bovine femoral cortical bone were treated by freezing, freeze-drying or defat-freezing implant preparations. They were transplanted into proximal diaphyseal shaft of bifibulae of 15 rabbits which were divided into three groups according to their implant preparation method. The fibulae transplantations were evaluated radiographically and examined osteoblast activity by bone alkaline phosphatase (BALP) biweekly for 16 weeks to observe new bone formation and union of the experimental defected region. New bone formation was observed in 7 cases in freeze-drying and defat-freezing group, respectively. Union of proximal and distal end of defected region, which was considered as success of bone graft, was observed in 4 cases (40%; 4 of 10 cases), respectively. In freezing group, new bone formation was observed in 6 cases but, there is no union observed. BALP value was increased over twice after two weeks of graft procedure in all union cases of freeze-drying and defat-freezing group (two of five animals, respectively) then gradually decreased to 16th week. In non-union cases, there is no significant variation in BALP value. Defat-freezing or freeze-drying preparations of implants are more efficacious in new bone formation than freezing method on rabbit xenograft. While it is difficult to propose which is superior between defat-freezing and freeze-drying, defatting of implants may enhance new bone formation in xenograft.

Influence of biodegradable polymer membrane on new bone formation and biodegradation of biphasic bone substitutes: an animal mandibular defect model study

  • Ku, Jeong-Kui;Kim, Young-Kyun;Yun, Pil-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.34.1-34.7
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the influence of biodegradable polycaprolactone membrane on new bone formation and the biodegradation of biphasic alloplastic bone substitutes using animal models. Materials and methods: In this study, bony defect was formed at the canine mandible of 8 mm in diameter, and the defects were filled with Osteon II. The experimental groups were covered with Osteoguide as barrier membrane, and the control groups were closed without membrane coverage. The proportion of new bone and residual bone graft material was measured histologically and histomorphometrically at postoperative 4 and 8 weeks. Results: At 4 weeks, the new bone proportion was similar between the groups. The proportion of remaining graft volume was 27.58 ± 6.26 and 20.01 ± 4.68% on control and experimental groups, respectively (P < 0.05). There was no significant difference between the two groups in new bone formation and the amount of residual bone graft material at 8 weeks. Conclusion: The biopolymer membrane contributes to early biodegradation of biphasic bone substitutes in the jaw defect but it does not affect the bone formation capacity of the bone graft.

Porcine study on the efficacy of autogenous tooth bone in the maxillary sinus

  • Lee, Du Han;Yang, Keun Yong;Lee, Jeong Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.3
    • /
    • pp.120-126
    • /
    • 2013
  • Objectives: This study sought to elucidate the effect of autogenous tooth bone material by experimenting on minipig's maxillary sinus and performing histological and histomorphometric analyses. Materials and Methods: Five 18-24 month-old male minipigs were selected, and right maxillary sinuses were grafted with bone graft material made of their respective autogenous teeth extracted eight weeks earlier. The left sides were grafted with synthetic hydroxyapatite as control groups. All minipigs were sacrificed at 12 weeks after bone graft, which was known to be 1 sigma (${\sigma}$) period for pigs. Specimens were evaluated histologically under a light microscope after haematoxylin-eosin staining followed by semi-quantitative study via histomorphometric analysis. The ratio of new bone to total area was evaluated using digital software for calculation of area. Results: All specimens were available, except one on the right side (experimental group), which was missing during specimen preparation. This study demonstrated new bone at the periphery of the existing bone in both groups, showing evidence of bone remodeling, however, encroachment of new bone on the central part of the graft at the 1 ${\sigma}$ period was observed only in the autogenous tooth bone group (experimental group). Histomorphometric analysis showed more new bone formation in the experimental group compared to the control group. Although the difference was not statistically significant (P>0.05), the mean percentage area for new bone for the experimental and control groups were $57.19%{\pm}11.16%$ and $34.07%{\pm}13.09%$, respectively. Conclusion: The novel bone graft material using autogenous tooth is a good alternative to autogenous bone, comparable to autogenous bone, and outperforming synthetic hydroxyapatite bone graft materials in terms of bone regeneration capacity. Augmentation with autogenous tooth bone materials will reduce donor site morbidity without hampering the safety of the autogenous bone graft.

Analyses Using Micro-CT Scans and Tissue Staining on New Bone Formation and Bone Fusion According to the Timing of Cranioplasty via Frozen Autologous Bone Flaps in Rabbits : A Preliminary Report

  • Shin, Hee Sup;Lee, Deok-Won;Lee, Seung Hwan;Koh, Jun Seok
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.4
    • /
    • pp.242-249
    • /
    • 2015
  • Objective : The timing of cranioplasty and method of bone flap storage are known risk factors of non-union and resorption of bone flaps. In this animal experimental study, we evaluated the efficacy of cranioplasty using frozen autologous bone flap, and examined whether the timing of cranioplasty after craniectomy affects bone fusion and new bone formation. Methods : Total 8 rabbits (male, older than 16 weeks) were divided into two groups of early cranioplasty group (EG, 4 rabbits) and delayed cranioplasty group (DG, 4 rabbits). The rabbits of each group were performed cranioplasty via frozen autologous bone flaps 4 weeks (EG) and 8 weeks (DG) after craniectomy. In order to obtain control data, the cranioplasty immediate after craniectomy were made on the contralateral cranial bone of the rabbits (control group, CG). The bone fusion and new bone formation were evaluated by micro-CT scan and histological examination 8 weeks after cranioplasty on both groups. Results : In the micro-CT scans, the mean values of the volume and the surface of new bone were $50.13{\pm}7.18mm^3$ and $706.23{\pm}77.26mm^2$ in EG, $53.78{\pm}10.86mm^3$ and $726.60{\pm}170.99mm^2$ in DG, and $31.51{\pm}12.84mm^3$ and $436.65{\pm}132.24mm^2$ in CG. In the statistical results, significant differences were shown between EG and CG and between DG and CG (volume : p=0.028 and surface : p=0.008). The histological results confirmed new bone formation in all rabbits. Conclusion : We observed new bone formation on all the frozen autologous bone flaps that was stored within 8 weeks. The timing of cranioplasty may showed no difference of degree of new bone formation. Not only the healing period after cranioplasty but the time interval from craniectomy to cranioplasty could affect the new bone formation.

Effects of bone healing capacity by autologous fibrin glue in experimental bone defect dogs (개에서 자가 fibrin glue가 골 결손치유에 미치는 영향)

  • Lee, Jong-il;Song, Ha-na;Kim, Nam-soo
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.2
    • /
    • pp.273-278
    • /
    • 2005
  • This study was investigated of the bone healing capacity by autologous fibrin glue in experimental bone defect dogs. The autologous fibrin glue manufactured just before the experiment was mixed with the concentrated fibrinogen from whole blood of the experimental dog and bovine thrombin. The experimental group was constituted with seven dogs. The experimental osteotomy was performed 5 mm length in bilateral region of proximal diaphyseal fibulae. The defected regions of experimental group were filled with the autologous fibrin glue by duploject. The experimental regions had been radiographed biweekly for 16 weeks to observe new bone formation and union. Bone alkaline phophatase (BALP) in all groups was evaluated biweekly till the end of the experiment to determine osteoblast activities. New bone formation had been observed in five regions of three dogs at four weeks after the experimental treatment and in two regions of one dog at ten weeks. The other seven regions of the experimental group and control group were not observed new bone formation until the end of the experiment. BALP value in four dogs observed new bone formation was increased to 97.10 IU/L (453.96%) at two weeks after the experimental treatment. The results of this experiment were suggested that the autologous fibrin glue was moderately effective in new bone formation in dogs.

Bone regeneration effects of human allogenous bone substitutes: a preliminary study

  • Lee, Deok-Won;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.132-138
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the bone regeneration effects of cortical, cancellous, and cortico-cancellous human bone substitutes on calvarial defects of rabbits. Methods: Four 8-mm diameter calvarial defects were created in each of nine New Zealand white rabbits. Freeze-dried cortical bone, freeze-dried cortico-cancellous bone, and demineralized bone matrix with freeze-dried cancellous bone were inserted into the defects, while the non-grafted defect was regarded as the control. After 4, 8, and 12 weeks of healing, the experimental animals were euthanized for specimen preparation. Micro-computed tomography (micro-CT) was performed to calculate the percent bone volume. After histological evaluation, histomorphometric analysis was performed to quantify new bone formation. Results: In micro-CT evaluation, freeze-dried cortico-cancellous human bone showed the highest percent bone volume value among the experimental groups at week 4. At week 8 and week 12, freeze-dried cortical human bone showed the highest percent bone volume value among the experimental groups. In histologic evaluation, at week 4, freeze-dried cortico-cancellous human bone showed more prominent osteoid tissue than any other group. New bone formation was increased in all of the experimental groups at week 8 and 12. Histomorphometric data showed that freeze-dried cortico-cancellous human bone showed a significantly higher new bone formation percentile value than any other experimental group at week 4. At week 8, freeze-dried cortical human bone showed the highest value, of which a significant difference existed between freeze-dried cortical human bone and demineralized bone matrix with freeze-dried cancellous human bone. At week 12, there were no significant differences among the experimental groups. Conclusions: Freeze-dried cortico-cancellous human bone showed swift new bone formation at the 4-week healing phase, whereas there was less difference in new bone formation among the experimental groups in the following healing phases.

Metabolic Bone Diseases and New Drug Developments

  • Natesan, Vijayakumar;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.309-319
    • /
    • 2022
  • Metabolic bone diseases are serious health issues worldwide, since several million individuals over the age of 50 are at risk of bone damage and should be worried about their bone health. One in every two women and one in every four men will break a bone during their lifetime due to a metabolic bone disease. Early detection, raising bone health awareness, and maintaining a balanced healthy diet may reduce the risk of skeletal fractures caused by metabolic bone diseases. This review compiles information on the most common metabolic bone diseases (osteoporosis, primary hyperparathyroidism, osteomalacia, and fluorosis disease) seen in the global population, including their symptoms, mechanisms, and causes, as well as discussing their prevention and the development of new drugs for treatment. A large amount of research literature suggests that balanced nutrition and balanced periodic supplementation of calcium, phosphate, and vitamin D can improve re-absorption and the regrowth of bones, and inhibit the formation of skeletal fractures, except in the case of hereditary bone diseases. Meanwhile, new and improved drug formulations, such as raloxifene, teriparatide, sclerostin, denosumab, and abaloparatide, have been successfully developed and administered as treatments for metabolic bone diseases, while others (romososumab and odanacatib) are in various stages of clinical trials.

Effectiveness of freeze-dried bone grafts on the non-union fracture model of dogs (개의 비유합(非癒合) 골절(骨折) model에 있어서 동결건조골이식(凍結乾燥骨移植)의 효과(效果))

  • Choi, In-hyuk;Kim, Hyeon-gyeong;Kim, Nam-soo;Sasaki, Nobuo
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.495-511
    • /
    • 1996
  • To investigate the effectiveness of the freeze-dried allografts and fibrin glue in bone grafts, the status of new bone formation and union of the grafted bone were observed in three types of grafting bones; autogenic bone(AT), allogenic bone(AL), and allogenic bone particles mixed with fibrin glue(FG). These were transplanted into non-union fracture model of 7 adult dogs with 2cm defect made in the proximal metaphysis of both fibulae. The autogenic and allogenic grafting bones had been treated by a modified freeze-dried method. The serial radiogram were observed the repair process of grafted bones biweekly until 17 or 21 weeks after transplantation and the observation of histological aspects, tetracycline double labeling and microradiography in the grafted bones were undertaken at 17 or 21 weeks after transplantation. The incorporation of bone minerals to the non-union fracture models were accomplished in 4 of 5 cases grafted with AL and in 2 of 4 cases grafted with AT. None of 5 cases grafted with FG were incorporated. The process of new bone formation and resorption in the grafted bones were observed three types; resorption of the grafted bones after newbone formation(type A) in 4 cases, new bone formation after resorption(type B) in 2 cases and complete or incomplete resorption without new bone formation(type C) in 8 cases. The modified freeze-dried method used in this study contributed to inhibite the rejection in allogenic grafts but the union period of the grafted freeze-dried bone was more prolonged than that of fresh autografts. Fibrin glue did not contribute to induce a new bone formation ofbone grafts.

  • PDF