DOI QR코드

DOI QR Code

Comparative study of new bone formation capability of zirconia bone graft material in rabbit calvarial

  • Kim, Ik-Jung (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Shin, Soo-Yeon (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 투고 : 2016.11.09
  • 심사 : 2018.02.27
  • 발행 : 2018.06.29

초록

PURPOSE. The purpose of this study was to compare the new bone formation capability of zirconia with those of other synthetic bone grafts. MATERIALS AND METHODS. Twelve rabbits were used and four 6-mm diameter transcortical defects were formed on each calvaria. Each defect was filled with Osteon II (Os), Tigran PTG (Ti), and zirconia (Zi) bone grafts. For the control group, the defects were left unfilled. The rabbits were sacrificed at 2, 4, and 8 weeks. Specimens were analyzed through micro computed tomography (CT) and histomorphometric analysis. RESULTS. The Ti and Zi groups showed significant differences in the amount of newly formed bone between 2 and 4 weeks and between 2 and 8 weeks (P<.05). The measurements of total bone using micro CT showed significant differences between the Os and Ti groups and between the Os and Zi groups at 2 and 8 weeks (P<.05). Comparing by week in each group, the Ti group showed a significant difference between 4 and 8 weeks. Histomorphometric analysis also showed significant differences in new bone formation between the control group and the experimental groups at 2, 4, and 8 weeks (P<.05). In the comparison of newly formed bone, significant differences were observed between 2 and 4 weeks and between 2 and 8 weeks (P<.05) in all groups. CONCLUSION. Zirconia bone graft material showed satisfactory results in new bone formation and zirconia could be used as a new synthetic bone graft material.

키워드

참고문헌

  1. Marx RE. Clinical application of bone biology to mandibular and maxillary reconstruction. Clin Plast Surg 1994;21:377-92.
  2. Hoexter DL. Bone regeneration graft materials. J Oral Implantol 2002;28:290-4. https://doi.org/10.1563/1548-1336(2002)028<0290:BRGM>2.3.CO;2
  3. Quattlebaum JB, Mellonig JT, Hensel NF. Antigenicity of freeze-dried cortical bone allograft in human periodontal osseous defects. J Periodontol 1988;59:394-7. https://doi.org/10.1902/jop.1988.59.6.394
  4. Sogal A, Tofe AJ. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone used for dental applications. J Periodontol 1999;70:1053-63. https://doi.org/10.1902/jop.1999.70.9.1053
  5. Vaccaro AR. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 2002;25:s571-8.
  6. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 2004;25:987- 94. https://doi.org/10.1016/S0142-9612(03)00621-5
  7. Kondo N, Ogose A, Tokunaga K, Ito T, Arai K, Kudo N, Inoue H, Irie H, Endo N. Bone formation and resorption of highly purified beta-tricalcium phosphate in the rat femoral condyle. Biomaterials 2005;26:5600-8. https://doi.org/10.1016/j.biomaterials.2005.02.026
  8. Gholami GA, Tehranchi M, Kadkhodazadeh M, Moghadam AA, Ghanavati F, Ardakani MRT, Aghaloo M, Mashhadiabbas F. Histologic and histomorphometric evaluation of bone substitutes in experimental defects. Res J Biol Sci 2010;5:465-9. https://doi.org/10.3923/rjbsci.2010.465.469
  9. Bystedt H, Rasmusson L. Porous titanium granules used as osteoconductive material for sinus floor augmentation: a clinical pilot study. Clin Implant Dent Relat Res 2009;11:101-5. https://doi.org/10.1111/j.1708-8208.2008.00100.x
  10. Al-Sabbagh M. Implants in the esthetic zone. Dent Clin North Am 2006;50:391-407. https://doi.org/10.1016/j.cden.2006.03.007
  11. Wenz HJ, Bartsch J, Wolfart S, Kern M. Osseointegration and clinical success of zirconia dental implants: a systematic review. Int J Prosthodont 2008;21:27-36.
  12. Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Bignozzi CA, Massari L, Brunelli G, Carinci F. Zirconium oxide coating improves implant osseointegration in vivo. Dent Mater 2008;24: 357-61. https://doi.org/10.1016/j.dental.2007.06.003
  13. Brüll F, van Winkelhoff AJ, Cune MS. Zirconia dental implants: a clinical, radiographic, and microbiologic evaluation up to 3 years. Int J Oral Maxillofac Implants 2014;29:914-20. https://doi.org/10.11607/jomi.3293
  14. Sennerby L, Dasmah A, Larsson B, Iverhed M. Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit. Clin Implant Dent Relat Res 2005;7:S13-20. https://doi.org/10.1111/j.1708-8208.2005.tb00070.x
  15. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  16. Gredes T, Kubasiewicz-Ross P, Gedrange T, Dominiak M, Kunert-Keil C. Comparison of surface modified zirconia implants with commercially available zirconium and titanium implants: a histological study in pigs. Implant Dent 2014;23: 502-7.
  17. Depprich R, Zipprich H, Ommerborn M, Mahn E, Lammers L, Handschel J, Naujoks C, Wiesmann HP, Kübler NR, Meyer U. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface. Head Face Med 2008;4: 25. https://doi.org/10.1186/1746-160X-4-25
  18. Garvie RC, Hannink RH, Pascoe RT. Ceramic steel? Nature 1975;258:703-4. https://doi.org/10.1038/258703a0
  19. Pae AR, Lee HS, Kim HS, Baik J, Woo YH. Cellular attachment and gene expression of osteoblast-like cells on zirconia ceramic surfaces. J Korean Acad Prosthodont 2008;43:227- 37.
  20. Guazzato M, Quach L, Albakry M, Swain MV. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent 2005;33:9-18. https://doi.org/10.1016/j.jdent.2004.07.001
  21. Kim YK, Kim SG, Kim BS, Jeong KI. Resorption of bone graft after maxillary sinus grafting and simultaneous implant placement. J Korean Assoc Oral Maxillofac Surg 2014;40:117- 22. https://doi.org/10.5125/jkaoms.2014.40.3.117
  22. Silva NR, Sailer I, Zhang Y, Coelho PG, Guess PC, Zembic A, Kohal RJ. Performance of zirconia for dental healthcare. Materials 2010;3:863-96. https://doi.org/10.3390/ma3020863
  23. Orentlicher G, Goldsmith D, Abboud M. Computer-guided planning and placement of dental implants. Atlas Oral Maxillofac Surg Clin North Am 2012;20:53-79. https://doi.org/10.1016/j.cxom.2011.12.004
  24. Gahleitner A, Watzek G, Imhof H. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws. Eur Radiol 2003;13:366-76.
  25. Xu H, Shimizu Y, Asai S, Ooya K. Experimental sinus grafting with the use of deproteinized bone particles of different sizes. Clin Oral Implants Res 2003;14:548-55. https://doi.org/10.1034/j.1600-0501.2003.00933.x
  26. Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J Biomed Mater Res 1971;5:161-229. https://doi.org/10.1002/jbm.820050613
  27. Huh JB, Jung DH, Kim JS, Shin SW. Effects of different sizes of Hydroxyapatite/${\beta}$-Tricalcium phosphate particles on vertical bone augmentation. J Korean Acad Prosthodont 2010;48:259-65. https://doi.org/10.4047/jkap.2010.48.4.259
  28. Song YG, Cho IH. Characteristics and osteogenic effect of zirconia porous scaffold coated with ${\beta}$-TCP/HA. J Adv Prosthodont 2014;6:285-94. https://doi.org/10.4047/jap.2014.6.4.285
  29. Langhoff JD, Voelter K, Scharnweber D, Schnabelrauch M, Schlottig F, Hefti T, Kalchofner K, Nuss K, von Rechenberg B. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: a study in sheep. Int J Oral Maxillofac Surg 2008;37:1125-32. https://doi.org/10.1016/j.ijom.2008.09.008
  30. Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 2003;29:8-12. https://doi.org/10.1563/1548-1336(2003)029<0008:BRTZCI>2.3.CO;2
  31. Kohal RJ, Weng D, Bächle M, Strub JR. Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J Periodontol 2004;75:1262-8. https://doi.org/10.1902/jop.2004.75.9.1262
  32. Pilathadka S, Vahalová D, Vosáhlo T. The Zirconia: a new dental ceramic material. An overview. Prague Med Rep 2007;108:5-12.
  33. Roberts EW, Poon LC, Smith RK. Interface histology of rigid endosseous implants. J Oral Implantol 1986;12:406-16.
  34. Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, Choi SH. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci 2010;40:180-7. https://doi.org/10.5051/jpis.2010.40.4.180
  35. Becker W, Becker BE, Handelsman M, Ochsenbein C, Albrektsson T. Guided tissue regeneration for implants placed into extraction sockets: a study in dogs. J Periodontol 1991;62:703-9. https://doi.org/10.1902/jop.1991.62.11.703
  36. Buser D, Hoffmann B, Bernard JP, Lussi A, Mettler D, Schenk RK. Evaluation of filling materials in membrane--protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res 1998;9:137-50. https://doi.org/10.1034/j.1600-0501.1998.090301.x
  37. Gotfredsen K, Nimb L, Hjorting-Hansen E. Immediate implant placement using a biodegradable barrier, polyhydroxybutyrate-hydroxyvalerate reinforced with polyglactin 910. An experimental study in dogs. Clin Oral Implants Res 1994;5:83- 91. https://doi.org/10.1034/j.1600-0501.1994.050204.x
  38. Hammerle CH, Jung RE. Bone augmentation by means of barrier membranes. Periodontol 2000 2003;33:36-53. https://doi.org/10.1046/j.0906-6713.2003.03304.x
  39. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 2003;14:201-9. https://doi.org/10.1023/A:1022872421333
  40. Kim YK, Yun PY, Lim SC, Kim SG, Lee HJ, Ong JL. Clinical evaluations of OSTEON as a new alloplastic material in sinus bone grafting and its effect on bone healing. J Biomed Mater Res B Appl Biomater 2008;86:270-7.
  41. Branemark PI, Zarb GA, Albrektsson T. Tissue integrated prostheses: Osseointegration in clinical dentistry. 1st ed. Quintessence Pub Co.; 1985. p. 221-9.
  42. Albrektsson T, Brånemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70. https://doi.org/10.3109/17453678108991776
  43. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132.
  44. Wohlfahrt JC, Monjo M, Ronold HJ, Aass AM, Ellingsen JE, Lyngstadaas SP. Porous titanium granules promote bone healing and growth in rabbit tibia peri-implant osseous defects. Clin Oral Implants Res 2010;21:165-73. https://doi.org/10.1111/j.1600-0501.2009.01813.x
  45. Thor A. Porous titanium granules and blood for bone regen- eration around dental implants: Report of four cases and review of the literature. Case Rep Dent 2013;2013:410515.
  46. Meganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA. Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. Bone 2009;45:1104-16. https://doi.org/10.1016/j.bone.2009.07.078
  47. Ejima K, Omasa S, Motoyoshi M, Arai Y, Kai Y, Amemiya T, Yamada H, Honda K, Shimizu N. Influence of metal artifacts on in vivo micro-CT for orthodontic mini-implants. J Oral Sci 2012;54:55-9. https://doi.org/10.2334/josnusd.54.55
  48. Kim HW, Georgiou G, Knowles JC, Koh YH, Kim HE. Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility. Biomaterials 2004;25:4203-13. https://doi.org/10.1016/j.biomaterials.2003.10.094
  49. Kim HW, Lee SY, Bae CJ, Noh YJ, Kim HE, Kim HM, Ko JS. Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. Biomaterials 2003;24:3277-84. https://doi.org/10.1016/S0142-9612(03)00162-5
  50. Kim HW, Kim HE, Salih V, Knowles JC. Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold. J Biomed Mater Res A 2004;68:522-30.

피인용 문헌

  1. In vivo approach on femur bone regeneration of white rat (Rattus norvegicus) with the use of hydroxyapatite from cuttlefish bone (Sepia spp.) as bone filler vol.12, pp.6, 2019, https://doi.org/10.14202/vetworld.2019.809-816
  2. Review of zirconia-based biomimetic scaffolds for bone tissue engineering vol.56, pp.14, 2018, https://doi.org/10.1007/s10853-021-05824-2
  3. Computational biomechanical modelling of the rabbit cranium during mastication vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-92558-5