• Title/Summary/Keyword: neutral difference equation

Search Result 28, Processing Time 0.022 seconds

OSCILLATION OF NEUTRAL DIFFERENCE EQUATIONS

  • Koo, Nam Jip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.125-131
    • /
    • 1999
  • We obtain some sufficient conditions for oscillation of the neutral difference equation with positive and negative coefficients $${\Delta}(x_n-cx_{n-m})+px_{n-k}-qx_{n-l}=0$$, where ${\Delta}$ denotes the forward difference operator, m, k, l, are nonnegative integers, and $c{\in}[0,1),p,q{\in}\mathbb{R}^+$.

  • PDF

OSCILLATORY BEHAVIOR OF THE SECOND-ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Dong, Wenlei;Ping, Bi
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.111-128
    • /
    • 2001
  • In this paper, we consider the oscillation of the second-order neutral difference equation Δ²(x/sub n/ - px/sub n-r/) + q/sub n/f(x/sub n/ - σ/sub n/) = 0 as well as the oscillatory behavior of the corresponding ordinary difference equation Δ²z/sub n/ + q/sub n/f(R(n,λ)z/sub n/) = 0

EXISTENCE AND MANN ITERATIVE METHODS OF POSITIVE SOLUTIONS OF FIRST ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Hao, Jinbiao;Kang, Shin Min
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.299-309
    • /
    • 2010
  • In this paper, we study the first order nonlinear neutral difference equation: $${\Delta}(x(n)+px(n-{\tau}))+f(n,x(n-c),x(n-d))=r(n),\;n{\geq}n_0$$. Using the Banach fixed point theorem, we prove the existence of bounded positive solutions of the equation, suggest Mann iterative schemes of bounded positive solutions, and discuss the error estimates between bounded positive solutions and sequences generated by Mann iterative schemes.

CLASSIFICATION AND EXISTENCE OF NONOSCILLATORY SOLUTIONS OF HIGHER ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • ZHOU YONG;LI C. F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.127-144
    • /
    • 2005
  • In this paper, we consider the higher order nonlinear neutral delay difference equation of the form $\Delta^{\gamma}(x_{n}+px_{n-\gamma})+f(n, x_{n-\sigma_1(n)}, x_{n-\sigma_2(n)}, \ldots, x_{n-\sigma{_m}(n)})=0$. We give an integrated classification of nonoscillatory solutions of the above equation according to their asymptotic behaviours. Necessary and sufficient conditions for the existence of nonoscillatory solutions with designated asymptotic properties are also established.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF FORCED NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Liu, Yuji;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.37-51
    • /
    • 2004
  • In this paper, we consider the asymptotic behavior of solutions of the forced nonlinear neutral difference equation $\Delta[x(n)-\sumpi(n)x(n-k_i)]+\sumqj(n)f(x(n-\iota_j))=r(n)$ with sign changing coefficients. Some sufficient conditions for every solution of (*) to tend to zero are established. The results extend and improve some known theorems in literature.

BOUNDED OSCILLATION OF SECOND ORDER UNSTABLE NEUTRAL TYPE DIFFERENCE EQUATIONS

  • Thandapani, E.;Arul, R.;Raja, P.S.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.79-90
    • /
    • 2004
  • In this paper the authors present sufficient conditions for all bounded solutions of the second order neutral difference equation ${\Delta}^2(y_n\;-\;py_{n-{\kappa}})\;-\;q_nf(y_{n-e})\;=\;0,\;n\;{\in}\;N$ to be oscillatory. Examples are provided to illustrate the results.

OSCILLATORY OF UNSTABLE TYPE SECOND-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Ping, Bi;Dong, Wenlei
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.87-99
    • /
    • 2002
  • We consider the problem of oscillation and nonoscillation solutions for unstable type second-order neutral difference equation : $\Delta^2(x(n))-p(n)x(n-\tau))=q(n)x(g(n))$. (1) In this paper, we obtain some conditions for the bounded solutions of Eq(1) to be oscillatory and for the existence of the nonoscillatory solutions.

OSCILLATION CRITERIA OF SECOND ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Lv, Xiaojing;Yu, Tian
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.125-138
    • /
    • 2003
  • Some Riccati type difference inequalities are established for the second-order nonlinear difference equations with negative neutral term $\Delta$(a(n)$\Delta$(x(n) - px(n-$\tau$))) + f(n, x($\sigma$(n))) = 0 using these inequalities we obtain some oscillation criteria for the above equation.

Oscillatory Behavior of Linear Neutral Delay Dynamic Equations on Time Scales

  • Saker, Samir H.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.175-190
    • /
    • 2007
  • By employing the Riccati transformation technique some new oscillation criteria for the second-order neutral delay dynamic equation $$(y(t)+r(t)y({\tau}(t)))^{{\Delta}{\Delta}}+p(t)y(\delta(t))=0$$, on a time scale $\mathbb{T}$ are established. Our results as a special case when $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{N}$ improve some well known oscillation criteria for second order neutral delay differential and difference equations, and when $\mathbb{T}=q^{\mathbb{N}}$, i.e., for second-order $q$-neutral difference equations our results are essentially new and can be applied on different types of time scales. Some examples are considered to illustrate the main results.

  • PDF

ASYMPTOTIC BEHAVIOUR AND EXISTENCE OF NONOSCILLATORY SOLUTIONS OF SECOND-ORDER NEUTRAL DELAY DIFFERENCE EQUATIONS

  • Li, Xianyi;Zhou, Yong
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.173-183
    • /
    • 2003
  • In this paper, we give a classification of nonoscillatory solution of a second-order neutral delay difference equation of the form △²(x/sub n/-c/sub n/x/sub n-r/)=f(n, x/sub g1(n)/, …, x/sub gm(n)/). Some existence results for each kind of nonoscillatory solutions we also established.