• 제목/요약/키워드: neurotransmission

검색결과 91건 처리시간 0.03초

Lithium-induced Increase of Synaptosomal Uptake of Norepinephrine in Rat Brain

  • Cho, Young-Wuk;Han, Seung-Ho;Kim, Chang-Ju;Min, Byung-Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권2호
    • /
    • pp.127-133
    • /
    • 1997
  • Lithium remains the most widely used therapeutic agent for bipolar affective disorder, particularly mania. Although many investigators have studied the effects of lithium on abnormalities in monoamine neuro-transmitter as a pathophysiological basis of affective disorder, the action mechanism of lithium ion remains still unknown. To explore the action mechanism of lithium in the brain, we examined the effects of lithium on the extrasynaptosomal concentrations of catecholamines and their metabolites. Synaptosomes were prepared from the rat forebrains and assays of catecholamines and metabolites were made using HPLC with an electrochemical detector. Lithium of 1mM decreased the extrasynaptosomal concentrations of NE from the control group of $3.07{\pm}1.19$ to the treated group of $0.00{\pm}0.00$ (ng/ml of synaptosomal suspension) but not that of DHPG. It can be suggested that lithium increases synaptosomal uptake of NE. Increased intraneuronal uptake of NE would decrease neurotransmission and extraneuronal metabolism of NE. Because increased brain NE metabolism and neurotransmission have been suggested as important components in the pathophysiology of bipolar affective disorder, especially mania, lithium-induced increase of intraneuronal NE uptake can be suspected as an action mechanism of therapeutic effect of lithium in manic patient, possibly in bipolar affective disorder.

  • PDF

I-123 MIBG Cardiac SPECT의 임상적 적응증 (Clinical Application of I-123 MIBG Cardiac Imaging)

  • 강도영
    • 대한핵의학회지
    • /
    • 제38권5호
    • /
    • pp.331-337
    • /
    • 2004
  • Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MIBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with I-123 MIBG imaging nay be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

INFLUENCE OF BRADYKININ ON CATECHOLAMINE SECRETION FROM THE ISOLATED PERFUSED RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Kang, Moo-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.128-128
    • /
    • 2003
  • Bradykinin modulates the sympathetic system in various ways. It can stimulate sympathetic neurotransmission directly through presynaptic receptors (Llona et al., 1991) and indirectly via its hypotensive or nociceptive effects which activate central and ganglionic mechanisms (Kuo and Keeton, 1991; Dray et al., 1988). However, it has been found that bradykinin can also liberate prostaglandins in peripheral tissues, thereby attenuating the release of catecholamines(Starke et al., 1977). (omitted)

  • PDF

$Ca^{2+}$ CALMODULIN CAUSES RAB3A TO DISSOCIATE FROM SYNAPTOSOMAL MEMBRANES

  • Park, Jae-Bong;Christoper C. Farnsworth;John A. Glomset
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1996년도 정기총회 및 학술발표회
    • /
    • pp.38-38
    • /
    • 1996
  • Rab3A is a synaptic vesicle-associated, GTP-binding protein that has been implicated in the regulation of neurotransmission. We show here that Ca2+/calmodulin can form a 1:1 complex with Rab3A and cause it to dissociate from synaptosomal membranes. Formation of the complex requires both the lipidated C-terminus of Rab3A and the presence of guanine nucleotide. (omitted)

  • PDF

Enhancement of GluN2B Subunit-Containing NMDA Receptor Underlies Serotonergic Regulation of Long-Term Potentiation after Critical Period in the Rat Visual Cortex

  • Joo, Kayoung;Rhie, Duck-Joo;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.523-531
    • /
    • 2015
  • Serotonin [5-hydroxytryptamine (5-HT)] regulates synaptic plasticity in the visual cortex. Although the effects of 5-HT on plasticity showed huge diversity depending on the ages of animals and species, it has been unclear how 5-HT can show such diverse effects. In the rat visual cortex, 5-HT suppressed long-term potentiation (LTP) at 5 weeks but enhanced LTP at 8 weeks. We speculated that this difference may originate from differential regulation of neurotransmission by 5-HT between the age groups. Thus, we investigated the effects of 5-HT on apha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-, ${\gamma}$-aminobutyric acid receptor type A (GABAAR)-, and N-methyl-D-aspartic acid receptor (NMDAR)-mediated neurotransmissions and their involvement in the differential regulation of plasticity between 5 and 8 weeks. AMPAR-mediated currents were not affected by 5-HT at both 5 and 8 weeks. GABAAR-mediated currents were enhanced by 5-HT at both age groups. However, 5-HT enhanced NMDAR-mediated currents only at 8 weeks. The enhancement of NMDAR-mediated currents appeared to be mediated by the enhanced function of GluN2B subunit-containing NMDAR. The enhanced GABAAR- and NMDAR-mediated neurotransmissions were responsible for the suppression of LTP at 5 weeks and the facilitation of LTP at 8 weeks, respectively. These results indicate that the effects of 5-HT on neurotransmission change with development, and the changes may underlie the differential regulation of synaptic plasticity between different age groups. Thus, the developmental changes in 5-HT function should be carefully considered while investigating the 5-HT-mediated metaplastic control of the cortical network.

분자동역학 전산모사에 의한 α6 nAChR Subunit의 α-conotoxin BuIA에 대한 선택성 연구 (Selectivity of the α6 nAChR Subunit on α-conotoxin BuIA Studied by Molecular Dynamics Simulations)

  • ;이명기
    • 한국수산과학회지
    • /
    • 제48권1호
    • /
    • pp.71-75
    • /
    • 2015
  • Nicotinic acetylcholine receptors (nAChRs) are essential for neurotransmission and important therapeutic targets of diseases related to neurotransmission. A recent experimental study identified three residues (Lys185, Asp187, and Ile188) of the ${\alpha}6$ nAChR subunit as determinants of ${\alpha}$-conotoxin BuIA selectivity, yet how these residues confer toxin selectivity remains unclear. In this study, we performed all-atom molecular dynamics simulations with two toxin-bound ${\alpha}4{\beta}2$ nAChR systems: the wild-type ${\alpha}4{\beta}2$ and one in which we replaced the three ${\alpha}4$ subunit residues with three ${\alpha}6$ subunit residues identified in an experimental study (Tyr185Lys, Thr187Asp, and Arg188Ile). After mutation, Asp199 lost the salt bridge formed with Arg188 in the wild type located around loop C. Then, the loop C conformation changed and became more flexible than that of the wild type. We also detected reduced space between the toxin and the binding site in the mutant simulation, resulting in increased binding affinity to the toxin. Therefore, we propose a new Asp199 mutation that breaks the salt bridge and may produce similar selectivity to that of the Arg188 mutation.

Effects of Intraperitoneal N-methyl-D-aspartate (NMDA) Administration on Nociceptive/Repetitive Behaviors in Juvenile Mice

  • Kim, Seonmin;Kim, Do Gyeong;Gonzales, Edson luck;Mabunga, Darine Froy N.;Shin, Dongpil;Jeon, Se Jin;Shin, Chan Young;Ahn, TaeJin;Kwon, Kyoung Ja
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.168-177
    • /
    • 2019
  • Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.

신경아교세포와 조현병 (Neuroglial Cells and Schizophrenia)

  • 원승희
    • 생물정신의학
    • /
    • 제22권2호
    • /
    • pp.47-54
    • /
    • 2015
  • In the past decade, structural, molecular, and functional changes in glial cells have become a major focus in the search for the neurobiological foundations of schizophrenia. Glial cells, consisting of oligodendrocytes, astrocytes, microglia, and nerve/glial antigen 2-positive cells, constitute a major cell population in the central nervous system. There is accumulating evidence of reduced numbers of oligodendrocytes and altered expression of myelin/oligodendrocyte-related genes that might explain the white matter abnormalities and altered inter- and intra-hemispheric connectivities that are characteristic signs of schizophrenia. Astrocytes play a key role in the synaptic metabolism of neurotransmitters ; thus, astrocyte dysfunction may contribute to certain aspects of altered neurotransmission in schizophrenia. Increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance to the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease.

NMDA Receptor Antagonists Enhance 5-HT Receptor-mediated Behavior, Head-Twitch Response, in Mice

  • Kim, Hack-Seang;Park, In-Sook;Chung, Myeon-Woo;Son, Young-Rey;Park, Woo-Kyu
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.102-102
    • /
    • 1997
  • The purpose of this study was to determine the behavioral interaction between glutamatergic and serotonergic receptors. In the present study, both the competitive (AP-5 and D-CPP) and the noncompetitive (MK-801, ketamine, dextrorphan and dextromethorphan) N-methyl-D-aspartate (NMDA) receptor antagonists markedly enhanced 5-HT(5-hydroxytryptamine)-induced selective serotonergic behavior, head-twitch response (HTR), in mice. These results suggest that the glutamatergic neurotransmission may modulate serotonergic function at the 5-HT receptor. The precise relationship between glutamatergic and serotonergic system is as yet undefined. However, these are the first data available regarding glutamatergic modulation of serotonergic function at the 5-HT receptor in intact mice, and the present results support the notion that the NMDA receptors may play important roles in the glutamatergic modulation of serotonergic function at the 5-HT receptor.

  • PDF

Inhibitory effects of new quinone compounds on eNOS activity in rat aorta and nNOS activity in rat brain

  • Yoo, So-Yeon;Seo, Ji-Hui;Ryu, Chung-Kyu;Kim, Hwa-Jung
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.248.3-249
    • /
    • 2002
  • Nitric oxide (NO) has been shown to play an important role in the regulation of vascular tone. platelet function. neurotransmission. and immune function. NO is synthesized from the L-arginine by NO synthase (NOS). Three distinct isoforms of NOS have been identified: calcium/calmodulin-dependent endothelial (eNOS) and neuronal (nNOS) isoforms which are constitutive and produce small quantities of NO, and an inducible isoform (iNOS) which is markedly induced in response to lipopolysaccharide (LPS) or inflammatory cytokines. (omitted)

  • PDF