• 제목/요약/키워드: neuronal regeneration

검색결과 52건 처리시간 0.028초

Regulatory Effects of Samul-tang on Axonal Recovery after Spinal Cord Injury in Rats

  • Lee, Ki-Tae;Kim, Yoon-Sik;Ryu, Ho-Ryong;Jo, Hyun-Kyeng;An, Jung-Jo;Namgung, Uk;Seol, In-Chan
    • 동의생리병리학회지
    • /
    • 제20권5호
    • /
    • pp.1303-1310
    • /
    • 2006
  • In oriental medicine, Samul-tang (SMT) has been used for the treatment of cardiovascular diseases and neuronal disorders. Here, possible effects of SMT on axonal regeneration after the spinal cord injury were examined. SMT treatment induced increases in regeneration-related proteins GAP-43, cell division cycle 2 (Cdc2) and phospho-Erk1/2 in the peripheral sciatic nerves after crush injury. Increased levels of Cdc2 and phospho-Erk1/2 were observe mostly in the gray matter area and some in the dorsomedial white matter. These increases correlated with increased cell numbers in affected areas. Moreover, axons of corticospinal tract (CST) showed increased sprouting in the injured spinal cord when administrated with SMT compared with saline-treated control. Thus, the present data indicate that SMT may be useful for identifying active components and for therapeutic application toward the treatment of spinal cord disorders after injury.

계혈등(鷄血藤)이 Rat의 말초신경 재생에 미치는 효과 (Effect of Gyehyuldeung Treatments in Peripheral Nerve Regeneration of Rat)

  • 임승민;안정조;조현경;유호룡;김윤식;설인찬
    • 대한한방내과학회지
    • /
    • 제30권2호
    • /
    • pp.375-387
    • /
    • 2009
  • Objective : Gyehyuldeung (GHD) has been widely used in oriental medicine for the treatments of cardiovascular and neurological disorders. Thus, its potential facilitatory activity on axonal regeneration was investigated in the rats. Methods: Sprague-Dawley rats were given crush injury at the sciatic nerve and the changes of axon growth after nerve injury on each nerve injury model were investigated with anti-NF-200 antibody, DiI, GAP-43 protein and Cdc2 protein Results : GHD-mediated enhancement of axonal regeneration after crush injury was measured in both qualitative and quantitative ways by immunofluorescence staining with anti-NF-200 antibody and retrograde tracing of fluorescence dye DiI. GAP-43 protein levels were elevated by GHD treatments in the distal injured sciatic nerve and DRG sensory neurons. The neurite outgrowth of DRG sensory neurons was facilitated by GHD treatment when co-cultured with Schwann cells and astrocytes prepared from injured sciatic nerves and injured spinal cord tissues, respectively. It was observed that Cdc2 protein was up-regulated in co-cultured Schwann cells or astrocytes and Cdc2 protein signals were co-localized to a certain extent with those of phospho-vimentin protein. Conclusions : These results suggest that GHD may play a facilitatory role in axonal regeneration by acting on the injured axons and adjacent non-neuronal cells. The current findings may be useful for the development of therapeutic targets through more specific explorations on molecular interactions between herbal components and endogenous factors.

  • PDF

Ginsenoside Rg1 및 Rb1을 처리한 신경세포주(SH-SY5Y세포)의 유전자 발현양상 (Gene Expression Profiling of SH-SY5Y Human Neuroblastoma Cells Treated with Ginsenoside Rg1 and Rb1)

  • 이준노;양병환;최승학;김석현;채영규;정경화;이준석;최강주;김영숙
    • 생물정신의학
    • /
    • 제12권1호
    • /
    • pp.42-61
    • /
    • 2005
  • Objectives:The ginsenoside Rg1 and Rb1, the major components of ginseng saponin, have neurotrophic and neuroprotective effects including promotion of neuronal survival and proliferation, facilitation of learning and memory, and protection from ischemic injury and apoptosis. In this study, to investigate the molecular basis of the effects of ginsenoside on neuron, we analyzed gene expression profiling of SH-SY5Y human neuroblastoma cells treated with ginsenoside Rg1 or Rb1. Methods:SH-SY5Y cells were cultured and treated in triplicate with ginsenoside Rg1 or Rb1($80{\mu}M$, $40{\mu}M$, $20{\mu}M$). The proliferation rates of SH-SY5Y cells were determined by MTT assay and microscopic examination. We used a high density cDNA microarray chip that contained 8K human genes to analyze the gene expression profiles in SH-SY5Y cells. We analyzed using the Significance Analysis of Microarray(SAM) method for identifying genes on a microarray with statistically significant changes in expression. Results:Treatment of SH-SY5Y cells with $80{\mu}M$ ginsenoside Rg1 or Rb1 for 36h showed maximal proliferation compared with other concentrations or control. The results of the microarray experiment yielded 96 genes were upregulated(${\geq}$3 fold) in Rg1 treated cells and 40 genes were up-regulated(${\geq}$2 fold) in Rb1 treated cells. Treatment with ginsenoside Rg1 for 36h induced the expression of some genes associated with protein biosynthesis, regulation of transcription or translation, cell proliferation and growth, neurogenesis and differentiation, regulation of cell cycle, energy transport and others. Genes associated with neurogenesis and neuronal differentiation such as SCG10 and MLP increased in ginsenoside Rg1 treated cells, but such changes did not occur in Rb1-group. Conclusion:Our data provide novel insights into the gene mechanisms involved in possible role for ginsenoside Rg1 or Rb1 in mediating neuronal proliferation or cell viability, which can elicit distinct patterns of gene expression in neuronal cell line. Ginsenoside Rg1 have more broad and strong effects than ginsenoside Rb1 in gene expression and related cellular physiology. In addition, we suggest that SCG10 gene, which is known to be expressed in neuronal differentiation during development and neuronal regeneration during adulthood, may have a role in enhancement of activity dependent synaptic plasticity or cytoskeletal regulation following treatment of ginsenoside Rg1. Further, ginsenoside Rg1 may have a possible role in regeneration of injured neuron, promotion of memory, and prevention from aging or neuronal degeneration.

  • PDF

Facilitated Axonal Regeneration of Injured Sciatic Nerves by Yukmijihwang-tang Treatment

  • Kim, Jung-Hyun;Seol, In-Chan;Ryu, Ho-Ryong;Jo, Hyun-Kyung;An, Joung-Jo;Namgung, Uk;Kim, Yoon-Sik
    • 동의생리병리학회지
    • /
    • 제22권4호
    • /
    • pp.896-902
    • /
    • 2008
  • Yukmijihwang-tang(YM) is used in Oriental medicine for treatments of diverse systemic symptoms including neurological dosorders. The present study was performed to examine potential effects of YM on growth-promoting activity of injured sciatic nerve axons. YM treatment in the injured sciatic nerve induced enhanced distal elongation of injured axons when measured 3 and 7 days after injury. Retrograde tracing of sciatic nerve axons showed YM-mediated increases in the number of DiI-labeled dorsal root ganglion (DRG) sensory neurons and spinal cord motor neurons at 3 days after injury. Hoechst nuclear staining showed that non-neuronal cell population was largely elevated by YM treatment in distal nerve area undergoing axonal regeneration. Furthermore, phospho-Erk1/2 protein levels were upregulated by YM treatment in the injured nerve area. These data suggest that YM may play a role in facilitated axonal regeneration in injured peripheral nerves. Further investigations of individual herbal components would be useful to explore effective molecular components and develop therapeutic strategies.

Damaged Neuronal Cells Induce Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • International Journal of Oral Biology
    • /
    • 제31권3호
    • /
    • pp.87-92
    • /
    • 2006
  • Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that $NF-{\kappa}B$, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.

척수손상 후 세포이식에 의한 운동기능의 회복증진 (Improvement of Functional Recovery by Cell Transplantation after Spinal Cord Injury)

  • 이배환;이경희;성제경;황세진;김계성
    • 감성과학
    • /
    • 제7권2호
    • /
    • pp.179-186
    • /
    • 2004
  • 중추신경계는 일단 손상이 되면 손상된 세포의 재생, 손상된 수초의 회복, 신경계의 정상적인 연결 등의 제한성 때문에 그 회복이 매우 힘들다. 이러한 중추신경계의 중요한 손상으로는 다발성 경화증, 뇌졸중, 척수손상, 외상, 축삭의 탈수초화 등이 있다. 이전 연구들은 많은 발생빈도를 보이고 있는 척수손상에서 실질적인 척수의 기능적인 회복을 위해 손상된 척수신경의 재생과 축삭의 재수초화가 중요한 요인이라고 전하고 있다. 최근에는 이러한 척수손상에 대한 치료적 접근으로서 세포이식 기술이 하나의 해결책을 열어주고 있다. 따라서 본 논문에서는 척수손상의 특성을 살펴보고, 척수손상에 의한 기능장애에 대해 세포이식이 기능의 회복을 증진시킬 수 있다는 증거를 논의하고자 한다.

  • PDF

Effect of Neurotrophic Factors on Neuronal Stem Cell Death

  • KimKwon, Yun-Hee
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.87-93
    • /
    • 2002
  • Neural cell survival is an essential concern in the aging brain and many diseases of the central nervous system. Neural transplantation of the stem cells are already applied to clinical trials for many degenerative neurological diseases, including Huntington's disease, Parkinson's disease, and strokes. A critical problem of the neural transplantation is how to reduce their apoptosis and improve cell survival. Neurotrophic factors generally contribute as extrinsic cues to promote cell survival of specific neurons in the developing mammalian brains, but the survival factor for neural stem cell is poorly defined. To understand the mechanism controlling stem cell death and improve cell survival of the transplanted stem cells, we investigated the effect of plausible neurotrophic factors on stem cell survival. The neural stem cell, HiB5, when treated with PDGF prior to transplantation, survived better than cells without PDGF. The resulting survival rate was two fold for four weeks and up to three fold for twelve weeks. When transplanted into dorsal hippocampus, they migrated along hippocampal alveus and integrated into pyramidal cell layers and dentate granule cell layers in an inside out sequence, which is perhaps the endogenous pathway that is similar to that in embryonic neurogenesis. Promotion of the long term-survival and differentiation of the transplanted neural precursors by PDGF may facilitate regeneration in the aging adult brain and probably in the injury sites of the brain.

흰쥐에서 편측 반회후두신경 재지배 후 neuronal Nitric Oxide Synthase(nNOS)의 발현과 후두기능회복과의 관계 (The Expression of neuronal Nitric Oxide Synthase in Reinnervated Recurrent Laryngeal Nerve)

  • 정성민;김성숙;조윤희;구태완;박수경;신유리
    • 대한후두음성언어의학회지
    • /
    • 제12권1호
    • /
    • pp.46-54
    • /
    • 2001
  • Background and Objectives : Nitric oxide(NO) is a short-lived molecule with messenger and cytotoxic functions in nervous, cardiovascular, and immune systems. Among the three distinct NOS isoforms, the neuronal isoform is expressed in small, discrete neuronal populations of CNS and PNS. Axonal injury in adult animals results in a dramatic NOS up-regulation in many types of central and peripheral neurons which normally lack the enzyme or express it only at very low levels. In previous study, we confirmed the efficacy of PEMS on the early functional recovery in rats with surgically transected and reanastomosed recurrent laryngeal nerve. Therefore, after we obtained functionally recovered rats using PEMS in this study, we studied to evaluate the expression of nNOS through the analysis of the difference between functional recovery group and non-recovery group in the recurrent laryngeal nerve. Materials and Method : Using 84 healthy male Sprague-Dawley rats, transections and primary anastomosis were performed on their left recurrent laryngeal nerves. Rats were then randomly assigned to 2 groups. The rats in group A(n=42) received PEMS by placing them in custom cages equipped with Helm-holz coils(3 hr/day, 5 days/wk, for 12 wk). The rats in group B(n=42) were handled the same way as the group A, except that they did not receive PEMS. Laryngovideoendoscopy was performed before and after surgery and followed up weekly. Laryngeal EMG was obtained in both PCA and TA muscles. Immunohistochemisty staining using monoclonal anti-neuronal nitric oxide synthase(nNOS) antibody was performed to detect nNOS in recurrent laryngeal nerve and nodose ganglion. Results : 20 rats(63%) in group A and 5 rats(17%) in the group B showed recovery of vocal fo1d motion. The number of NOS-positive cells was increased in functionally-recovered rats. NOS-staining intensity was reduced 12 weeks after nerve injury. The difference between PEMS group and non-stimulated group was not found. Conclusion : This study shows that nNOS may exert a beneficial effect on nerve regeneration and functional repair.

  • PDF

흰쥐의 좌골신경축삭 압좌 손상 후 시호(柴胡) 추출물에 의한 재생반응성 개선효과 (Effects of Bupleuri radix Extract on Axon Regrowth in the Injured Sciatic Nerve of Rats)

  • 강준혁;오민석
    • 대한한의학회지
    • /
    • 제31권1호
    • /
    • pp.93-111
    • /
    • 2010
  • Objectives: The present study was performed to evaluate the potential effects of Bupleuri radix (SH) on regenerative activities in the peripheral sciatic nerve after crushing injury in rats. Methods: Axonal regeneration after crush injury in rats was analyzed by immunofluorescence staining using anti-NF-200 antibody and retrograde tracing of DiI-axons. Changes in protein levels in the sciatic nerve axons and DRG tissue were analyzed by Western blot analysis and immunofluorescence staining. Effects of SH extract treatment on neurite outgrowth was examined by immunofluorescence staining for cultured DRG neurons. Results: Major findings on the effects of SH extract treatment on axonal regeneration are summarized as follows. 1. SH-mediated enhancement in axonal regeneration was identified by immuno- fluorescence straining of NF-200 protein and retrograde tracing of DiI-labeled axons. 2. Axonal GAP-43 protein levels were upregulated by SH not only in the injured axons but also in the DRG sensory neurons corresponding to sciatic sensory axons. 3. Phospho-Erk1/2 protein levels were increased in both injured axonal area and DRG sensory neurons by SH. Phospho-Erk1/2 was also found in non-neuronal cells in the injured axons. 4. SH elevated levels of Cdc2 protein produced in Schwann cells in the distal portions of injured sciatic nerves. 5. The neurite outgrowth of DRG sensory neurons in culture was augmented by SH, and these changes were positively associated with GAP-43 production levels in the DRG neurons. Conclusions: These data suggest that SH extract improves the regenerative responses of injured peripheral neurons, and thus may be useful for understanding molecular basis for the development of therapeutic strategies.

Imaging Single-mRNA Localization and Translation in Live Neurons

  • Lee, Byung Hun;Bae, Seong-Woo;Shim, Jaeyoun Jay;Park, Sung Young;Park, Hye Yoon
    • Molecules and Cells
    • /
    • 제39권12호
    • /
    • pp.841-846
    • /
    • 2016
  • Local protein synthesis mediates precise spatio-temporal regulation of gene expression for neuronal functions such as long-term plasticity, axon guidance and regeneration. To reveal the underlying mechanisms of local translation, it is crucial to understand mRNA transport, localization and translation in live neurons. Among various techniques for mRNA analysis, fluorescence microscopy has been widely used as the most direct method to study localization of mRNA. Live-cell imaging of single RNA molecules is particularly advantageous to dissect the highly heterogeneous and dynamic nature of messenger ribonucleoprotein (mRNP) complexes in neurons. Here, we review recent advances in the study of mRNA localization and translation in live neurons using novel techniques for single-RNA imaging.