• Title/Summary/Keyword: neurodegenerative diseases

Search Result 423, Processing Time 0.026 seconds

Adult Neurogenesis in Insulted Brain

  • Kim, Byung-Woo;Son, Hyeon
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.107-114
    • /
    • 2007
  • Although there are some questions about the venues of adult neurogenesis, it is undoubtedly accepted that new neurons are born in adult brains. Adult neurogenesis is regulated by a wide array of factors. Insults harmful to brain, such as neurodegenerative diseases, seizure, ischemia and exposure to drugs of abuse, are intricately related to adult neurogenesis. Whereas neurodegenerative diseases are characterized by death or functional loss of specific neurons, recent studies report that they can be accompanied by neurogenesis. In addition, alcohol and drugs of abuse which have been reputed to cause irreversible damage to brain can also generate newly born cells in adult brain. As yet, however, we have little knowledge of the functional significance and roles of adult neurogenesis under pathological settings, not to mention under physiological settings. Accordingly, in this review we briefly summarize the results of studies which focus on adult neurogenesis in insulted brain, instead of trying to draw hurried conclusion regarding the relationship between adult neurogenesis and brain insults.

A New Mathematical Model for Optimum Production of Neural Stem Cells in Large-scale

  • Hossain, S.M. Zakir;Sultana, Nahid;Babar, S.M. Enayetul;Haki, G.D.
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 2007
  • Millions of individuals worldwide are currently afflicted with neurodegenerative disorders such as Parkinson's disease and multiple sclerosis which are caused by the death of specific types of specialized cells in the Central Nervous System (CNS). Recently, Neural Stem Cells (NSCs) are able to replace these dead cells with new functional cells, thereby providing a cure for devastating neural diseases. The clinical use of neural stem cells (NSCs) for the treatment of neurological diseases requires overcoming the scarcity of the initial in vivo NSC population. Thus, we developed a novel 3-dimentional cellular automata model for optimum production of neural stem cells and their derivatives in large scale to treat neurodegenerative disorder patients.

Animal Models of Cognitive Deficits for Probiotic Treatment

  • Kwon, Oh Yun;Lee, Seung Ho
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.981-995
    • /
    • 2022
  • Cognitive dysfunction is a common symptom of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, and is known to be caused by the structural and functional loss of neurons. Many natural agents that can improve cognitive function have been developed and assessed for efficacy using various cognitive deficit animal models. As the gut environment is known to be closely connected to brain function, probiotics are attracting attention as an effective treatment target that can prevent and mitigate cognitive deficits as a result of neurodegenerative diseases. Thus, the objective of this review is to provide useful information about the types and characteristics of cognitive deficit animal models, which can be used to evaluate the anti-cognitive effects of probiotics. In addition, this work reviewed recent studies describing the effects and treatment conditions of probiotics on cognitive deficit animal models. Collectively, this review shows the potential of probiotics as edible natural agents that can mitigate cognitive impairment. It also provides useful information for the design of probiotic treatments for cognitive deficit patients in future clinical studies.

Coenzyme Q10: a progress towards the treatment of neurodegenerative disease

  • Kumar, Peeyush;Kumar, Pramod;Ram, Alpana;Kuma, Mithilesh;Kumar, Rajeev
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.239-253
    • /
    • 2010
  • Coenzyme $Q_{10}$ ($CoQ_{10}$, or ubiquinone) is an electron carrier of the mitochondrial respiratory chain (electron transport chain) with antioxidant properties. In view of the involvement of $CoQ_{10}$ in oxidative phosphorylation and cellular antioxidant protection a deficiency in this quinone would be expected to contribute to disease pathophysiology by causing a failure in energy metabolism and antioxidant status. Indeed, a deficit in $CoQ_{10}$ status has been determined in a number of neuromuscular and neurodegenerative disorders. Primary disorders of $CoQ_{10}$ biosynthesis are potentially treatable conditions and therefore a high degree of clinical awareness about this condition is essential. A secondary loss of $CoQ_{10}$ status following HMG-CoA reductase inhibitor (statins) treatment has been implicated in the pathophysiology of the myotoxicity associated with this pharmacotherapy. $CoQ_{10}$ and its analogue, idebenone, have been widely used in the treatment of neurodegenerative and neuromuscular disorders. These compounds could potentially play a role in the treatment of mitochondrial disorders, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, and other conditions which have been linked to mitochondrial dysfunction. This article reviews the physiological roles of $CoQ_{10}$, as well as the rationale and the role in clinical practice of $CoQ_{10}$ supplementation in different neurological diseases, from primary $CoQ_{10}$ deficiency to neurodegenerative disorders. These will help in future for treatment of patients suffering from neurodegenerative disease.

Neuroprotective Effects of Methanol Extracts of Jeju Native Plants on Hydrogen Peroxide-induced Cytotoxicity in SH-SY5Y Human Neuroblastoma Cells

  • Kong, Pil-Jae;Kim, Yu-Mi;Lee, Hee-Jae;Kim, Sung-Soo;Yoo, Eun-Sook;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.171-174
    • /
    • 2007
  • Neuronal death is a common characteristic hallmark of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases, whereas oriental medicinal plants have to possess valuable therapeutic potentials to treat neurodegenerative diseases. In the present study, in an attempt to provide neuroprotective agents from natural plants, 80% methanol extracts of a wide range of medicinal plants, which are native to Jeju Island in Korea, were prepared and their protective effects on hydrogen peroxide-induced apoptotic cell death were examined. Among those tested, extracts from Smilax china and Saururus chinesis significantly decreased hydrogen peroxide-induced apoptotic cell death. The extracts attenuated hydrogen peroxide($H_2O_2$)-induced caspase-3 activation in a dose-dependent manner. Further, plant extracts restored $H_2O_2$-induced depletion of intracellular glutathione, a major endogenous antioxidant. The data suggest that Jeju native medicinal plants could potentially be used as therapeutic agents for treating or preventing neurodegenerative diseases in which oxidative stress is implicated.

The role of p62 in ceramide induced neuronal cell death (Ceramide에 의한 신경세포 사멸과정에서 p62의 역할)

  • Joung, In-Sil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.648-653
    • /
    • 2009
  • p62 is a key component of protein aggregates found in brains of neurodegenerative diseases in which oxidative stress is involved in the pathogenesis. p62 was induced in SH-SY5Y, a neuroblastoma cell line, by hydroxydoparnine or $C_2-ceramide$ known to be related to neurodegenerative diseases. The over-expression of p62 showed the neuroprotective effect against the ceramide induced cell death. In addition, p62 became insoluble and cleaved forms as time proceeded after the ceramide treatment, suggesting the mechanism by which p62 is associated with aggregates in neurodegenerative diseases.

MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.227-244
    • /
    • 2011
  • MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of miRNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress.

Synapses in neurodegenerative diseases

  • Bae, Jae Ryul;Kim, Sung Hyun
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.237-246
    • /
    • 2017
  • Synapse is the basic structural and functional component for neural communication in the brain. The presynaptic terminal is the structural and functionally essential area that initiates communication and maintains the continuous functional neural information flow. It contains synaptic vesicles (SV) filled with neurotransmitters, an active zone for release, and numerous proteins for SV fusion and retrieval. The structural and functional synaptic plasticity is a representative characteristic; however, it is highly vulnerable to various pathological conditions. In fact, synaptic alteration is thought to be central to neural disease processes. In particular, the alteration of the structural and functional phenotype of the presynaptic terminal is a highly significant evidence for neural diseases. In this review, we specifically describe structural and functional alteration of nerve terminals in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD).