Browse > Article
http://dx.doi.org/10.5851/kosfa.2022.e45

Animal Models of Cognitive Deficits for Probiotic Treatment  

Kwon, Oh Yun (Department of Nano-Bioengineering, Incheon National University)
Lee, Seung Ho (Department of Nano-Bioengineering, Incheon National University)
Publication Information
Food Science of Animal Resources / v.42, no.6, 2022 , pp. 981-995 More about this Journal
Abstract
Cognitive dysfunction is a common symptom of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, and is known to be caused by the structural and functional loss of neurons. Many natural agents that can improve cognitive function have been developed and assessed for efficacy using various cognitive deficit animal models. As the gut environment is known to be closely connected to brain function, probiotics are attracting attention as an effective treatment target that can prevent and mitigate cognitive deficits as a result of neurodegenerative diseases. Thus, the objective of this review is to provide useful information about the types and characteristics of cognitive deficit animal models, which can be used to evaluate the anti-cognitive effects of probiotics. In addition, this work reviewed recent studies describing the effects and treatment conditions of probiotics on cognitive deficit animal models. Collectively, this review shows the potential of probiotics as edible natural agents that can mitigate cognitive impairment. It also provides useful information for the design of probiotic treatments for cognitive deficit patients in future clinical studies.
Keywords
cognitive deficits; probiotics; neurodegenerative disease; gut-brain axis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Chiu MJ, Chen TF, Yip PK, Hua MS, Tang LY. 2006. Behavioral and psychologic symptoms in different types of dementia. J Formos Med Assoc 105:556-562.   DOI
2 Choi JH, Lee EB, Jang HH, Cha YS, Park YS, Lee SH. 2021. Allium hookeri extracts improve scopolamine-induced cognitive impairment via activation of the cholinergic system and anti-neuroinflammation in mice. Nutrients 13:2890.   DOI
3 Collins SM, Surette M, Bercik P. 2012. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735-742.   DOI
4 Kaur H, Nagamoto-Combs K, Golovko S, Golovko MY, Klug MG, Combs CK. 2020b. Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer's disease. Neurobiol Aging 92:114-134.   DOI
5 Kim HY, Lee DK, Chung BR, Kim HV, Kim YS. 2016. Intracerebroventricular injection of amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J Vis Exp 109:e53308.   DOI
6 Kim Y, Kim J, He M, Lee A, Cho E. 2021b. Apigenin ameliorates scopolamine-induced cognitive dysfunction and neuronal damage in mice. Molecules 26:5192.
7 Kim H, Kim S, Park SJ, Park G, Shin H, Park MS, Kim J. 2021a. Administration of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI improves cognitive and memory function in the mouse model of Alzheimer's disease. Front Aging Neurosci 13:709091.
8 Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, Kondo T, Abe K, Xiao JZ. 2017. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci Rep 7:13510.
9 Konsman JP, Parnet P, Dantzer R. 2002. Cytokine-induced sickness behaviour: Mechanisms and implications. Trends Neurosci 25:154-159.   DOI
10 Kumar A, Dogra S, Prakash A. 2009. Effect of carvedilol on behavioral, mitochondrial dysfunction, and oxidative damage against D-galactose induced senescence in mice. Naunyn Schmiedebergs Arch Pharmacol 380:431-441.   DOI
11 Kwon OY, Lee SH. 2020. Ameliorating activity of Ishige okamurae on the amyloid beta-induced cognitive deficits and neurotoxicity through regulating ERK, p38 MAPK, and JNK signaling in Alzheimer's disease-like mice model. Mol Nutr Food Res 64:e1901220.
12 Lee HJ, Lee KE, Kim JK, Kim DH. 2019. Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Sci Rep 9:11814.
13 Yang L, Zhou R, Tong Y, Chen P, Shen Y, Miao S, Liu X. 2020a. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis 140:104814.
14 Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, Lu D, Wei W, Wang Y, Li H, Fu Y, Zhu L. 2019. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 9:5790.
15 Zhou H, Lapointe BM, Clark SR, Zbytnuik L, Kubes P. 2006. A requirement for microglial TLR4 in leukocyte recruitment into brain in response to lipopolysaccharide. J Immunol 177:8103-8110.   DOI
16 Lazareno S, Popham A, Birdsall NJM. 2000. Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-3H]scopolamine and acetylcholine at muscarinic receptor subtypes: Identification of a second allosteric site. Mol Pharmacol 58:194-207.   DOI
17 Lee DY, Shin YJ, Kim JK, Jang HM, Joo MK, Kim DH. 2021. Alleviation of cognitive impairment by gut microbiota lipopolysaccharide production-suppressing Lactobacillus plantarum and Bifidobacterium longum in mice. Food Funct 12:10750-10763.   DOI
18 Lee HJ, Lim SM, Kim DH. 2018. Lactobacillus johnsonii CJLJ103 attenuates scopolamine-induced memory impairment in mice by increasing BDNF expression and inhibiting NF-κB activation. J Microbiol Biotechnol 28:1443-1446.   DOI
19 Liu Y, Liu Y, Guo Y, Xu L, Wang H. 2021. Phlorizin exerts potent effects against aging induced by D-galactose in mice and PC12 cells. Food Funct 12:2148-2160.   DOI
20 Kwon OY, Lee SH. 2021. Ishige okamurae suppresses trimethyltin-induced neurodegeneration and glutamate-mediated excitotoxicity by regulating MAPKs/Nrf2/HO-1 antioxidant pathways. Antioxidants 10:440.
21 Briguglio M, Dell'Osso B, Panzica G, Malgaroli A, Banfi G, Zanaboni Dina C, Galentino R, Porta M. 2018. Dietary neurotransmitters: A narrative review on current knowledge. Nutrients 10:591.
22 Bruel-Jungerman E, Lucassen PJ, Francis F. 2011. Cholinergic influences on cortical development and adult neurogenesis. Behav Brain Res 221:379-388.   DOI
23 Cheng LH, Chou PY, Hou AT, Huang CL, Shiu WL, Wang S. 2022. Lactobacillus paracasei PS23 improves cognitive deficits via modulating the hippocampal gene expression and the gut microbiota in D-galactose-induced aging mice. Food Funct 13:5240-5251.   DOI
24 Logsdon AF, Erickson MA, Rhea EM, Salameh TS, Banks WA. 2018. Gut reactions: How the blood-brain barrier connects the microbiome and the brain. Exp Biol Med 243:159-165.   DOI
25 Lok K, Zhao H, Shen H, Wang Z, Gao X, Zhao W, Yin M. 2013. Characterization of the APP/PS1 mouse model of Alzheimer's disease in senescence accelerated background. Neurosci Lett 557:84-89.   DOI
26 Cao J, Amakye WK, Qi C, Liu X, Ma J, Ren J. 2021. Bifidobacterium lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer's disease in the APP/PS1 mouse model. Eur J Nutr 60:3757-3769.   DOI
27 Christensen H, Mackinnon AJ, Korten AE, Jorm AF, Henderson AS, Jacomb P, Rodgers B. 1999. An analysis of diversity in the cognitive performance of elderly community dwellers: Individual differences in change scores as a function of age. Psychol Aging 14:365-379.   DOI
28 Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. 2019. Time to test antibacterial therapy in Alzheimer's disease. Brain 142:2905-2929.
29 Lopez-Sobaler AM, Lorenzo Mora AM, Salas Gonzalez MD, Peral Suarez A, Aparicio A, Ortega RM. 2021. Importance of choline in cognitive function. Nutr Hosp 37:18-23.
30 Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM. 2003. Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron 39:409-421.   DOI
31 Parameshwaran K, Irwin MH, Steliou K, Pinkert CA. 2010. D-galactose effectiveness in modeling aging and therapeutic antioxidant treatment in mice. Rejuvenation Res 13:729-735.   DOI
32 Patel C, Pande S, Acharya S. 2020. Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn Schmiedebergs Arch Pharmacol 393:1955-1962.   DOI
33 Perry VH. 2004. The influence of systemic inflammation on inflammation in the brain: Implications for chronic neurodegenerative disease. Brain Behav Immun 18:407-413.   DOI
34 Petrella C, Strimpakos G, Torcinaro A, Middei S, Ricci V, Gargari G, Mora D, De Santa F, Farioli-Vecchioli S. 2021. Proneurogenic and neuroprotective effect of a multi strain probiotic mixture in a mouse model of acute inflammation:Involvement of the gut-brain axis. Pharmacol Res 172:105795.
35 Prakash A, Kumar A. 2013. Pioglitazone alleviates the mitochondrial apoptotic pathway and mito-oxidative damage in the dgalactose-induced mouse model. Clin Exp Pharmacol Physiol 40:644-651.   DOI
36 Rehman SU, Shah SA, Ali T, Chung JI, Kim MO. 2017. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol Neurobiol 54:255-271.   DOI
37 Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jaggi F, Wolburg H, Gengler S, Haass C, Ghetti B, Czech C, Holscher C, Mathews PM, Jucker M. 2006. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7:940-946.   DOI
38 Ramalho JB, Spiazzi CC, Bicca DF, Rodrigues JF, Sehn CP, da Silva WP, Cibin FWS. 2022. Beneficial effects of Lactococcus lactis subsp. cremoris LL95 treatment in an LPS-induced depression-like model in mice. Behav Brain Res 426:113847.
39 Ravi SK, Narasingappa RB, Vincent B. 2019. Neuro-nutrients as anti-Alzheimer's disease agents: A critical review. Crit Rev Food Sci Nutr 59:2999-3018.   DOI
40 Shoemark DK, Allen SJ. 2015. The microbiome and disease: Reviewing the links between the oral microbiome, aging, and Alzheimer's disease. J Alzheimers Dis 43:725-738.   DOI
41 Shwe T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. 2018. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp Gerontol 101:13-36.   DOI
42 Stover KR, Campbell MA, Van Winssen CM, Brown RE. 2015. Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer's disease. Behav Brain Res 289:29-38.   DOI
43 Mohammadi G, Dargahi L, Peymani A, Mirzanejad Y, Alizadeh SA, Naserpour T, Nassiri-Asl M. 2019. The effects of probiotic formulation pretreatment (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on a lipopolysaccharide rat model. J Am Coll Nutr 38:209-217.   DOI
44 Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC. 2014. Single App knock-in mouse models of Alzheimer's disease. Nat Neurosci 17:661-663.   DOI
45 Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF. 2010. Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathol 20:598-612.   DOI
46 MacIntyre A, Abramov R, Hammond CJ, Hudson AP, Arking EJ, Little CS, Appelt DM, Balin BJ. 2003. Chlamydia pneumoniae infection promotes the transmigration of monocytes through human brain endothelial cells. J Neurosci Res 71:740-750.   DOI
47 Maia LF, Kaeser SA, Reichwald J, Hruscha M, Martus P, Staufenbiel M, Jucker M. 2013. Changes in amyloid-β and Tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci Transl Med 5:194re2.
48 Mehla J, Lacoursiere SG, Lapointe V, McNaughton BL, Sutherland RJ, McDonald RJ, Mohajerani MH. 2019. Age-dependent behavioral and biochemical characterization of single APP knock-in mouse (APPNL-G-F/NL-G-F) model of Alzheimer's disease. Neurobiol Aging 75:25-37.   DOI
49 Miyamoto M, Kiyota Y, Nishiyama M, Nagaoka A. 1992. Senescence-accelerated mouse (SAM): Age-related reduced anxiety-like behavior in the SAM-P/8 strain. Physiol Behav 51:979-985.   DOI
50 Miyamoto M, Kiyota Y, Yamazaki N, Nagaoka A, Matsuo T, Nagawa Y, Takeda T. 1986. Age-related changes in learning and memory in the senescence-accelerated mouse (SAM). Physiol Behav 38:399-406.   DOI
51 Morais LH, Schreiber HL IV, Mazmanian SK. 2021. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 19:241-255.   DOI
52 Morley JE, Armbrecht HJ, Farr SA, Kumar VB. 2012. The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 1822:650-656.   DOI
53 Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L. 1992. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of β-amyloid. Nat Genet 1:345-347.   DOI
54 Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J, Lannfelt L. 2001. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nat Neurosci 4:887-893.   DOI
55 Banks WA, Farr SA, Morley JE. 2002. Entry of blood-borne cytokines into the central nervous system: Effects on cognitive processes. Neuroimmunomodulation 10:319-327.   DOI
56 Akter R, Chowdhury MAR, Rahman MH. 2021. Flavonoids and polyphenolic compounds as potential talented agents for the treatment of Alzheimer's disease and their antioxidant activities. Curr Pharm Des 27:345-356.   DOI
57 Ali T, Yoon GH, Shah SA, Lee HY, Kim MO. 2015. Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus. Sci Rep 5:11708.
58 Alladi S, Mekala S, Chadalawada SK, Jala S, Mridula R, Kaul S. 2011. Subtypes of dementia: A study from a memory clinic in India. Dement Geriatr Cogn Disord 32:32-38.   DOI
59 Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B. 1999. TNFα plus IFNγ induce the production of Alzheimer β-amyloid peptides and decrease the secretion of APPs. FASEB J 13:63-68.   DOI
60 Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, Fiorini D, Boarelli MC, Rossi G, Eleuteri AM. 2017. Microbiota modulation counteracts Alzheimer's disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7:2426.
61 Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. 2021. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci USA 118:e2102191118.
62 Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R. 2006. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: Potential factors in amyloid plaque formation. J Neurosci 26:10129-10140.   DOI
63 Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I. 1998. Functional food science and gastrointestinal physiology and function. Br J Nutr 80:S147-S171.   DOI
64 Bowler JV, Munoz DG, Merskey H, Hachinski V. 1998. Fallacies in the pathological confirmation of the diagnosis of Alzheimer's disease. J Neurol Neurosurg Psychiatry 64:18-24.   DOI
65 Buxbaum JD, Oishi M, Chen HI, Pinkas-Kramarski R, Jaffe EA, Gandy SE, Greengard P. 1992. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci USA 89:10075-10078.   DOI
66 Sun J, Xu J, Yang B, Chen K, Kong Y, Fang N, Gong T, Wang F, Ling Z, Liu J. 2019. Effect of Clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer's disease via regulating gut microbiota and metabolites butyrate. Mol Nutr Food Res 64:1900636.
67 Van Erum J, Van Dam D, De Deyn PP. 2019. Alzheimer's disease: Neurotransmitters of the sleep-wake cycle. Neurosci Biobehav Rev 105:72-80.   DOI
68 Vitetta L, Briskey D, Hayes E, Shing C, Peake J. 2012. A review of the pharmacobiotic regulation of gastrointestinal inflammation by probiotics, commensal bacteria and prebiotics. Inflammopharmacology 20:251-266.   DOI
69 Wang QJ, Shen YE, Wang X, Fu S, Zhang X, Zhang YN, Wang RT. 2020. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice. Aging 12:628-649.   DOI
70 Whitehouse PJ, Price DL, Clark AW, Coyle JT, Delong MR. 1981. Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122-126.   DOI
71 Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delong MR. 1982. Alzheimer's disease and senile dementia: Loss of neurons in the basal forebrain. Science 215:1237-1239.   DOI
72 Yadang FSA, Nguezeye Y, Kom CW, Betote PHD, Mamat A, Tchokouaha LRY, Taiwe GS, Agbor GA, Bum EN. 2020. Scopolamine-induced memory impairment in mice: Neuroprotective effects of Carissa edulis (Forssk.) Valh (Apocynaceae) aqueous extract. Int J Alzheimers Dis 2020:6372059.
73 Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T. 1981. A new murine model of accelerated senescence. Mech Ageing Dev 17:183-194.   DOI
74 Deng X, Zhao S, Liu X, Han L, Wang R, Hao H, Jiao Y, Han S, Bai C. 2020. Polygala tenuifolia: A source for antialzheimer's disease drugs. Pharm Biol 58:410-416.   DOI
75 Devi L, Ohno M. 2010. Phospho-eIF2α level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice. PLOS ONE 5:e12974.
76 Song X, Zhao Z, Zhao Y, Jin Q, Li S. 2022. Protective effects of Bacillus coagulans JA845 against D-galactose/AlCl3-induced cognitive decline, oxidative stress and neuroinflammation. J Microbiol Biotechnol 32:212-219.   DOI
77 Vitetta L, Vitetta G, Hall S. 2018. Immunological tolerance and function: Associations between intestinal bacteria, probiotics, prebiotics, and phages. Front Immunol 9:2240.
78 Zhu G, Zhao J, Zhang H, Chen W, Wang G. 2021. Administration of Bifidobacterium breve improves the brain function of Aβ1-42-treated mice via the modulation of the gut microbiome. Nutrients 13:1602.   DOI
79 Webberley TS, Masetti G, Bevan RJ, Kerry-Smith J, Jack AA, Michael DR, Thomas S, Glymenaki M, Li J, McDonald JAK, John D, Morgan JE, Marchesi JR, Good MA, Plummer SF, Hughes TR. 2022. The impact of probiotic supplementation on cognitive, pathological and metabolic markers in a transgenic mouse model of Alzheimer's disease. Front Neurosci 16:843105.
80 Yang X, Yu D, Xue L, Li H, Du J. 2020b. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B 10:475-487.   DOI
81 Woo JY, Gu W, Kim KA, Jang SE, Han MJ, Kim DH. 2014. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe 27:22-26.   DOI
82 Guerreiro RJ, Baquero M, Blesa R, Boada M, Bras JM, Bullido MJ, Calado A, Crook R, Ferreira C, Frank A, Gomez-Isla T, Hernandez I, Lleo A, Machado A, Martinez-Lage P, Masdeu J, Molina-Porcel L, Molinuevo JL, Pastor P, Perez-Tur J, Relvas R, Oliveira CR, Ribeiro MH, Rogaeva E, Sa A, Samaranch L, Sanchez-Valle R, Santana I, Tarraga L, Valdivieso F, Singleton A, Hardy J, Clarimon J. 2010. Genetic screening of Alzheimer's disease genes in Iberian and African samples yields novel mutations in presenilins and APP. Neurobiol Aging 31:725-731.   DOI
83 Kamdi SP, Raval A, Nakhate KT. 2021. Phloridzin attenuates lipopolysaccharide-induced cognitive impairment via antioxidant, anti-inflammatory and neuromodulatory activities. Cytokine 139:155408.
84 Kaur H, Golovko S, Golovko MY, Singh S, Darland DC, Combs CK. 2020a. Effects of probiotic supplementation on short chain fatty acids in the AppNL-G-F mouse model of Alzheimer's disease. J Alzheimers Dis 76:1083-1102.   DOI