• Title/Summary/Keyword: neuro-fuzzy Inference

Search Result 231, Processing Time 0.027 seconds

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

A Study on Fuzzy Wavelet Neural Network System Based on ANFIS Applying Bell Type Fuzzy Membership Function (벨형 퍼지 소속함수를 적용한 ANFIS 기반 퍼지 웨이브렛 신경망 시스템의 연구)

  • 변오성;조수형;문성용
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.363-369
    • /
    • 2002
  • In this paper, it could improved on the arbitrary nonlinear function learning approximation which have the wavelet neural network based on Adaptive Neuro-Fuzzy Inference System(ANFIS) and the multi-resolution Analysis(MRA) of the wavelet transform. ANFIS structure is composed of a bell type fuzzy membership function, and the wavelet neural network structure become composed of the forward algorithm and the backpropagation neural network algorithm. This wavelet composition has a single size, and it is used the backpropagation algorithm for learning of the wavelet neural network based on ANFIS. It is confirmed to be improved the wavelet base number decrease and the convergence speed performances of the wavelet neural network based on ANFIS Model which is using the wavelet translation parameter learning and bell type membership function of ANFIS than the conventional algorithm from 1 dimension and 2 dimension functions.

Fuzzy Modeling and Design of Fuzzy Controller Using Fuzzy Clustering (퍼지 클러스터링을 이용한 퍼지 모델링과 퍼지 제어기의 설계)

  • Kwag, Keun-Chang;Park, Sang-Min;Ryu, Jeong-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.675-678
    • /
    • 1997
  • In this paper, we present a fast and robust algorithm for the design of fuzzy controller and identifying fuzzy model from numerical data by combining the cluster estimation method with a linear least squares estimation procedure. The proposed method is compared with Adaptive Neuro-Fuzzy Inference System(ANFIS) as the standard example of neuro-fuzzy model. Finally we will show its usefulness and effectiveness for the design of fuzzy controller of a cart-pole system and fuzzy modeling for the coagulant dosing of a water purification system.

  • PDF

Runoff estimation using modified adaptive neuro-fuzzy inference system

  • Nath, Amitabha;Mthethwa, Fisokuhle;Saha, Goutam
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.545-553
    • /
    • 2020
  • Rainfall-Runoff modeling plays a crucial role in various aspects of water resource management. It helps significantly in resolving the issues related to flood control, protection of agricultural lands, etc. Various Machine learning and statistical-based algorithms have been used for this purpose. These techniques resulted in outcomes with an acceptable rate of success. One of the pertinent machine learning algorithms namely Adaptive Neuro Fuzzy Inference System (ANFIS) has been reported to be a very effective tool for the purpose. However, the computational complexity of ANFIS is a major hindrance in its application. In this paper, we resolved this problem of ANFIS by incorporating one of the evolutionary algorithms known as Particle Swarm Optimization (PSO) which was used in estimating the parameters pertaining to ANFIS. The results of the modified ANFIS were found to be satisfactory. The performance of this modified ANFIS is then compared with conventional ANFIS and another popular statistical modeling technique namely ARIMA model with respect to the forecasting of runoff. In the present investigation, it was found that proposed PSO-ANFIS performed better than ARIMA and conventional ANFIS with respect to the prediction accuracy of runoff.

Application of ANFIS Power Control for Downlink CDMA-Based LMDS Systems

  • Lee, Ze-Shin;Tsay, Mu-King;Liao, Chien-Hsing
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.182-192
    • /
    • 2009
  • Rain attenuation and intercell interference are two crucial factors in the performance of broadband wireless access networks such as local multipoint distribution systems (LMDS) operating at frequencies above 20 GHz. Power control can enhance the performance of downlink CDMA-based LMDS systems by reducing intercell interference under clear sky conditions; however, it may damage system performance under rainy conditions. To ensure robust operation under both clear sky and rainy conditions, we propose a novel power-control scheme which applies an adaptive neuro-fuzzy inference system (ANFIS) for downlink CDMA-based LMDS systems. In the proposed system, the rain rate and the number of users are two inputs of the fuzzy inference system, and output is defined as channel quality, which is applied in the power control scheme to adjust the power control region. Moreover, ITU-R P.530 is employed to estimate the rain attenuation. The influence of the rain rate and the number of users on the distance-based power control (DBPC) scheme is included in the simulation model as the training database. Simulation results indicate that the proposed scheme improves the throughput of the DBPC scheme.

  • PDF

A Study on an Adaptive Membership Function for Fuzzy Inference System

  • Bang, Eun-Oh;Chae, Myong-Gi;Lee, Snag-Bae;Tack, Han-Ho;Kim, Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.532-538
    • /
    • 1998
  • In this paper, a new adaptive fuzzy inference method using neural network based fuzzy reasoning is proposed to make a fuzzy logic control system more adaptive and more effective. In most cases, the design of a fuzzy inference system rely on the method in which an expert or a skilled human operator would operate in that special domain. However, if he has not expert knowledge for any nonlinear environment, it is difficult to control in order to optimize. Thus, using the proposed adaptive structure for the fuzzy reasoning system can controled more adaptive and more effective in nonlinear environment for changing input membership functions and output membership functions. The proposed fuzzy inference algorithm is called adaptive neuro-fuzzy control(ANFC). ANFC can adapt a proper membership function for nonlinear plant, based upon a minimum number of rules and an initial approximate membership function. Nonlinear function approximation and rotary inverted pendulum control system ar employed to demonstrate the viability of the proposed ANFC.

  • PDF

The Inference System of Bead Geometry in GMAW (GMA 용접공정의 비드형상 추론기술)

  • Kim, Myun-Hee;Choi, Young-Geun;Shin, Hyeon-Seung;Lee, Moon-Hwan;Lee, Tae-Young;Lee, Sang-Hyoup
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF

Flame Diagnosis Using Neuro-Fuzzy Learning Algorithm (뉴로퍼지학습 알고리듬을 이용한 연소상태진단)

  • Lee, Tae-Yeong;Kim, Seong-Hwan;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.587-595
    • /
    • 2002
  • Recent trend changes a criterion for evaluation of humors that environmental problems are raised as a global issue. Burners with higher thermal efficiency and lower oxygen in the exhaust gas, evaluated better. To comply with environmental regulations, burners must satisfy the NO/sub x/ and CO regulation. Consequently, 'good burner'means one whose thermal efficiency is high under the constraint of NO/sub x/ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop a feedback control scheme whose output is the consistency of NO/sub x/ and CO. This paper describes the development of a real time flame diagnosis technique that evaluate and diagnose the combustion states, such as consistency of components in exhaust gas, stability of flame in the quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using Neuro-Fuzzy algorithm. This study focuses on the relation of the color of the flame and the state of combustion. Neuro-Fuzzy loaming algorithm is used in obtaining the fuzzy membership function and rules. Using the constructed inference algorithm, the amount of NO/sub x/ and CO of the combustion gas was successfully inferred.

Implementation of Daily Water Supply Prediction System by Artificial Intelligence Models (일급수량 예측을 위한 인공지능모형 구축)

  • Yeon, In-sung;Jun, Kye-won;Yun, Seok-whan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.395-403
    • /
    • 2005
  • It is very important to forecast water supply for reasonal operation and management of water utilities. In this paper, water supply forecasting models using artificial intelligence are developed. Artificial intelligence models shows better results by using Temperature(t), water supply discharge (t-1) and water supply discharge (t-2), which are expressed by neural network(LMNNWS; Levenberg-Marquardt Neural Network for Water Supply, MDNNWS; MoDular Neural Network for Water Supply) and neuro fuzzy(ANASWS; Adaptive Neuro-Fuzzy Inference Systems for Water Supply). ANFISWS model which is applied for water supply forecasting shows stable application to the variable water supply data. As results, MDNNWS model shows the highest overall accuracy among proposed water supply forecasting models and the lowest estimation error with the order of ANFISWS, LMNNWS model.

Study on Incident Detection Algorithm using Neuro-Fuzzy Inference System (Neuro-Fuzzy 추론 시스템을 이용한 유고검지 알고리즘 연구)

  • Hong, Nam-Kwan;Choi, Jin-Woo;Lee, Seung-Heon;Yang, Young-Kyu
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1234-1239
    • /
    • 2006
  • 신속하고 정확한 교통정보 서비스의 제공은 원활한 교통소통을 위하여 필수적인 요소이다. 특히, 교통사고, 도로보수 그리고 자연재해와 같은 유고가 발생할 경우, 운전자에게 즉시 통보해주어 우회할 수 있도록 조치하는 것이 필요하다. 이를 위하여 다양한 교통정보 수집기에서 수집된 교통정보를 바탕으로 실시간으로 유고상황을 판별하는 연구가 많이 진행되고 있다. 유고상황 분석은 다양한 환경요인으로 인해 판별이 어렵고, 최근에 활용되고 있는 인공지능 기법은 검지에 드는 시간 비용이 많다는 문제를 가지고 있다. 본 연구에서는 과거에 발생한 각종 돌발 상황을 분석하여 실시간으로 유고상황을 검지하는 것이 목적이다. 유고검지를 위해 GPS를 탑재한 probe car에서 수집된 차량속도와 온라인으로 제보된 유고정보를 ANFIS를 이용하여 분석 후 유고상태를 판별한다. 본 연구를 통해 실시간 도로 이용자들이 유고 발생 지역의 정보를 제공받고 그 상황에 신속하게 대처하게 함으로써 교통 혼잡 완화에 기여할 것으로 기대한다.

  • PDF