• 제목/요약/키워드: neural system

검색결과 5,492건 처리시간 0.035초

신경망을 이용한 냉간 단조품 설계에 관한 연구 (A Study on Cold Forging Design Using Neural Networks)

  • 김영호;서윤수;박종옥
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.178-182
    • /
    • 1995
  • The technique of neural networks is applied to cold forging design system. A user can select more desirable plans in cold forging design by being advised with expert's opinion from neural networks. The neural networks are learned with 3 parts which are most important in cold forging design-undercut, narrow hole, sharp corner. Using the neural networks, the cold forging design system built in this study determines forming possibility about variable shapes in product. We can get available result using the system.

  • PDF

신경회로망기반 다중고장모델에 의한 비선형시스템의 고장진단 (Fault Diagnosis of the Nonlinear Systems Using Neural Network-Based Multi-Fault Models)

  • 이인수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.115-118
    • /
    • 2001
  • In this paper we propose an FDI(fault detection and isolation) algorithm using neural network-based multi-fault models to detect and isolate single faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output.

  • PDF

최적 구조 신경 회로망을 이용한 선박용 안정화 위성 안테나 시스템의 모델링 (Modelling of a Shipboard Stabilized Satellite Antenna System Using an Optimal Neural Network Structure)

  • 김민정;황승욱
    • 한국항해항만학회지
    • /
    • 제28권5호
    • /
    • pp.435-441
    • /
    • 2004
  • 본 논문은 비선형성을 많이 내포하고 있어 수학적으로 모델링 하기 어려운 선박용 안정화 위성 안테나 시스템을 모델링하기 위해서, 신경 회로망의 오차 및 응답시간을 최소로 하는 최적 구조 신경 회로망 모델을 도출하고 이를 적용하고자 한다. 오차와 응답시간을 최소화하기 위해 유전알고리즘을 이용하여 신경 회로망 구조를 설계하였다. 안테나 시스템으로부터 얻어진 입출력 데이터에 거하여 본 논문에서 제안한 식별기를 이용하여 안테나 시스템을 식별하였으며, 실제 선박의 운동 성분에 대해서도 시스템을 잘 표현할 수 있는 최적 구조 신경 회로 기반 시스템 식별기를 얻을 수 있었다. 실제 실험을 통해서, 최적 신경회로망 구조가 안테나 시스템 식별에 효과적인 것을 알 수 있었다.

The Neural-Network Approach to Recognize Defect Pattern in LED Manufacturing

  • Chen, Wen-Chin;Tsai, Chih-Hung;Hsu, Shou-Wen
    • International Journal of Quality Innovation
    • /
    • 제7권3호
    • /
    • pp.58-69
    • /
    • 2006
  • This paper presents neural network-based recognition system for automatic light emitting diode (LED) inspection. The back-propagation neural network (BPNN) is proposed and tested. The current-voltage (I-V) characteristic data of LED from the inspection process is used for the network training and testing. This study selects 300 random samples as network training and employs 100 samples as network testing. The experimental results show that if the classification work is done well, the accuracy of recognition is 100%, and the testing speed of the proposed recognition system is almost one half faster than the traditional inspection system does. The proposed neural-network approach is successfully demonstrated by real data sets and can be effectively developed as a recognition system for a practical application purpose.

신경망-유전자 알고리즘을 이용한 전기${\cdot}$유압 서보시스템의 파라미터 식별 (Parameter Identification Using Hybrid Neural-Genetic Algorithm in Electro-Hydraulic Servo System)

  • 곽동훈;정봉호;이춘태;이진걸
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.192-199
    • /
    • 2002
  • This paper demonstrates that hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system Identification of electro-hydraulic servo system. This algorithm are consist of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. We manufactured electro-hydraulic servo system and the hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values(mass, damping coefficient, bulk modulus, spring coefficient) which minimize total square error.

전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별 (Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm)

  • 곽동훈;이춘태;정봉호;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.442-447
    • /
    • 2003
  • This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.

개선된 신경망-유전자 다중모델에 의한 전기.유압 서보시스템의 파라미터 식별 (Parameter Identification of an Electro-Hydraulic Servo System Using an Improved Hybrid Neural-Genetic Multimodel Algorithm)

  • 곽동훈;정봉호;이춘태;이진걸
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.196-203
    • /
    • 2003
  • This paper demonstrates that an improved hybrid neural-genetic multimodel parameter estimation algorithm can be applied to the structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm, The ICRA neural network evaluates each member of a generation of model and the genetic algorithm produces new generation of model. We manufactured an electro-hydraulic servo system and the improved hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values, such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimize total square error.

Neural Network Based Expert System for Induction Motor Faults Detection

  • Su Hua;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.929-940
    • /
    • 2006
  • Early detection and diagnosis of incipient induction machine faults increases machinery availability, reduces consequential damage, and improves operational efficiency. However, fault detection using analytical methods is not always possible because it requires perfect knowledge of a process model. This paper proposes a neural network based expert system for diagnosing problems with induction motors using vibration analysis. The short-time Fourier transform (STFT) is used to process the quasi-steady vibration signals, and the neural network is trained and tested using the vibration spectra. The efficiency of the developed neural network expert system is evaluated. The results show that a neural network expert system can be developed based on vibration measurements acquired on-line from the machine.

정규화 입력을 사용한 신경망 알고리즘에 의한 냉동기의 부분 고장 검출 (The Partial Fault Detection of an hir-Conditioning System by the Neural Network Algorithm using Normalized Input Data)

  • 한도영;황정욱
    • 설비공학논문집
    • /
    • 제15권3호
    • /
    • pp.159-165
    • /
    • 2003
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. To detect partial faults of the air-conditioning system, a neural network algorithm may be used. In this study, the neural network algorithm using normalized input data by the standard deviation was applied. And the [7$\times$10$\times$10$\times$1] neural network structure was selected. Test results showed that the neural network algorithm using normalized input data was very effective to detect the condenser fouling and the evaporator fan fault of an air-conditioning system.

카오틱 신경망을 이용한 적응제어에 관한 연구 (A study on the Adaptive Neural Controller with Chaotic Neural Networks)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • 융합신호처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.41-48
    • /
    • 2003
  • 본 논문은 개선된 카오틱 신경망을 이용한 비선형 시스템의 적응제어에 관한 것이다. 개선된 카오틱 신경망은 기존의 카오틱 신경망을 간략화하며 동적 특성을 강화하기 위하여 제안하였다 또한 새로운 동적 역전파 학습방법을 개발하였다. 제안된 신경회로망은 다변수 시스템의 시스템식별과 신경망 적응제어 시스템에 적용하였다. 제안된 신경망은 비선형 동적시스템에 우수한 적응성을 가지므로 시뮬레이션 결과는 우수한 성능을 보였다.

  • PDF