• Title/Summary/Keyword: neural recording

Search Result 81, Processing Time 0.027 seconds

Quadratic Sigmoid Neural Equalizer (이차 시그모이드 신경망 등화기)

  • Choi, Soo-Yong;Ong, Sung-Hwan;You, Cheol-Woo;Hong, Dae-Sik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.123-132
    • /
    • 1999
  • In this paper, a quadratic sigmoid neural equalizer(QSNE) is proposed to improve the performance of conventional neural equalizer in terms of bit error probability by using a quadratic sigmoid function as the activation function of neural networks. Conventional neural equalizers which have been used to compensate for nonlinear distortions adopt the sigmoid function. In the case of sigmoid neural equalizer, each neuron has one linear decision boundary. So many neurons are required when the neural equalizer has to separate complicated structure. But in case of the proposed QSNF and quadratic sigmoid neural decision feedback equalizer(QSNDFE), each neuron separates decision region with two parallel lines. Therefore, QSNE and QSNDFE have better performance and simpler structure than the conventional neural equalizers in terms of bit error probability. When the proposed QSNDFE is applied to communication systems and digital magnetic recording systems, it is an improvement of approximately 1.5dB~8.3dB in signal to moise ratio(SNR) over the conventional decision feedback equalizer(DEF) and neural decision feedback equalizer(NDFE). As intersymbol interference(ISI) and nonlinear distortions become severer, QSNDFE shows astounding SNR shows astounding SNR performance gain over the conventional equalizers in the same bit error probability.

  • PDF

Nonlinear Modeling of Super-RENS System Using a Neural Networks (신경망을 이용한 Super-RENS 시스템의 비선형 모델링)

  • Seo, Man-Jung;Im, Sung-Bin;Lee, Jae-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.53-60
    • /
    • 2008
  • Recently, various recording technologies are studied for optical data storage. After standardization of BD (Blue-ray Disc) and HD-DVD (High-Definition Digital Versatile Disc), the industry is looking for a suitable technology for next generation optical data storage. Super-RENS (Super-resolution near field structure) technique, which is capable of compatibility with other systems, is one of next optical data storage. In this paper, we analyze the nonlinearity of Super-RENS read-out signal through the bicoherence test, which uses HOS (Higher-Order Statistics) and apply neural networks for nonlinear modeling. The model structure considered in this paper is the NARX (Nonlinear AutoRegressive eXogenous) model. The experiment results indicate that the read-out signals have nonlinear characteristics. In addition, it verified the possibility that neural networks can be utilized for nonlinear modeling of Super-RENS systems.

Neural Networks-Based Nonlinear Equalizer for Super-RENS Discs (Super-RENS 디스크를 위한 신경망 기반의 비선형 등화기)

  • Seo, Man-Jung;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.90-96
    • /
    • 2008
  • Recently, various recording technologies are studied for optical data storage. After standardization of BD (Blu-ray Disc) and HD-DVD (High-Definition Digital Versatile Disc), the industry is looking for a suitable technology for next generation optical data storage. Super-RENS (Super-Resolution Near Field Structure) technique, which is capable of compatibility with other systems, is one of next optical data storage. In this paper, we proposed a neural network-based nonlinear equalizer (NNEQ) for Super-RENS discs. To mitigate the nonlinear ISI (Inter-Symbol Interference), we applied NARX (Nonlinear AutoRegressive eXogenous) which is a kind of neural networks. Its validity is tested with the RF signal samples obtained from a Super-RENS disc. The performance of the proposed equalizer is superior to the one without equalization and that of the Limit-EQ in terms of BER (Bit Error Rate).

An Integrated Approach of CNT Front-end Amplifier towards Spikes Monitoring for Neuro-prosthetic Diagnosis

  • Kumar, Sandeep;Kim, Byeong-Soo;Song, Hanjung
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • The future neuro-prosthetic devices would be required spikes data monitoring through sub-nanoscale transistors that enables to neuroscientists and clinicals for scalable, wireless and implantable applications. This research investigates the spikes monitoring through integrated CNT front-end amplifier for neuro-prosthetic diagnosis. The proposed carbon nanotube-based architecture consists of front-end amplifier (FEA), integrate fire neuron and pseudo resistor technique that observed high electrical performance through neural activity. A pseudo resistor technique ensures large input impedance for integrated FEA by compensating the input leakage current. While carbon nanotube based FEA provides low-voltage operation with directly impacts on the power consumption and also give detector size that demonstrates fidelity of the neural signals. The observed neural activity shows amplitude of spiking in terms of action potential up to $80{\mu}V$ while local field potentials up to 40 mV by using proposed architecture. This fully integrated architecture is implemented in Analog cadence virtuoso using design kit of CNT process. The fabricated chip consumes less power consumption of $2{\mu}W$ under the supply voltage of 0.7 V. The experimental and simulated results of the integrated FEA achieves $60G{\Omega}$ of input impedance and input referred noise of $8.5nv/{\sqrt{Hz}}$ over the wide bandwidth. Moreover, measured gain of the amplifier achieves 75 dB midband from range of 1 KHz to 35 KHz. The proposed research provides refreshing neural recording data through nanotube integrated circuit and which could be beneficial for the next generation neuroscientists.

Single-Channel Recording of TASK-3-like $K^+$ Channel and Up-Regulation of TASK-3 mRNA Expression after Spinal Cord Injury in Rat Dorsal Root Ganglion Neurons

  • Jang, In-Seok;La, Jun-Ho;Kim, Gyu-Tae;Lee, Jeong-Soon;Kim, Eun-Jin;Lee, Eun-Shin;Kim, Su-Jeong;Seo, Jeong-Min;Ahn, Sang-Ho;Park, Jae-Yong;Hong, Seong-Geun;Kang, Da-Won;Han, Jae-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.245-251
    • /
    • 2008
  • Single-channel recordings of TASK-1 and TASK-3, members of two-pore domain $K^+$ channel family, have not yet been reported in dorsal root ganglion (DRG) neurons, even though their mRNA and activity in whole-cell currents have been detected in these neurons. Here, we report single-channel kinetics of the TASK-3-like $K^+$ channel in DRG neurons and up-regulation of TASK-3 mRNA expression in tissues isolated from animals with spinal cord injury (SCI). In DRG neurons, the single-channel conductance of TASK-3-like $K^+$ channel was $33.0{\pm}0.1$ pS at - 60 mV, and TASK-3 activity fell by $65{\pm}5%$ when the extracellular pH was changed from 7.3 to 6.3, indicating that the DRG $K^+$ channel is similar to cloned TASK-3 channel. TASK-3 mRNA and protein levels in brain, spinal cord, and DRG were significantly higher in injured animals than in sham-operated ones. These results indicate that TASK-3 channels are expressed and functional in DRG neurons and the expression level is up-regulated following SCI, and suggest that TASK-3 channel could act as a potential background $K^+$ channel under SCI-induced acidic condition.

EMG-based Real-time Finger Force Estimation for Human-Machine Interaction (인간-기계 인터페이스를 위한 근전도 기반의 실시간 손가락부 힘 추정)

  • Choi, Chang-Mok;Shin, Mi-Hye;Kwon, Sun-Cheol;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.132-141
    • /
    • 2009
  • In this paper, we describe finger force estimation from surface electromyogram (sEMG) data for intuitive and delicate force control of robotic devices such as exoskeletons and robotic prostheses. Four myoelectric sites on the skin were found to offer favorable sEMG recording conditions. An artificial neural network (ANN) was implemented to map the sEMG to the force, and its structure was optimized to avoid both under- and over-fitting problems. The resulting network was tested using recorded sEMG signals from the selected myoelectric sites of three subjects in real-time. In addition, we discussed performance of force estimation results related to the length of the muscles. This work may prove useful in relaying natural and delicate commands to artificial devices that may be attached to the human body or deployed remotely.

Noise Reduction in Single Fiber Auditory Neural Responses Based on Pattern Matching Algorithm

  • Woo, Ji-Hwan;Miller Charles A.;Abbas Paul J.;Hong, Sung-Hwa;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.199-205
    • /
    • 2005
  • When recording single-unit responses from neural systems, a common problem is the accurate detection of spikes (action potentials) in the presence of competing unwanted (noise) signals. While some sources of noise can be readily dealt with through filtering or 'template subtraction' techniques, other sources present a more difficult problem. In particular, noise components introduced by power supplies, which contain harmonics of the power-line frequency, can be particularly troublesome in that they can mimic the shape of the desired spikes. Thus, standard 'template subtraction' techniques or notch-filtering approaches are not appropriate. In this study, we propose the use of a novel template-subtraction scheme that involves estimating the power-line noise waveform and using cross-correlation techniques to subtract them from the recordings. This technique requires two key steps: (1) cross-correlation analysis of each recorded waveform extracts a robust representation of the power-line noise waveform and (2) a second level of cross-correlation to successfully subtract that representation from each recorded waveform. This paper describes this algorithm and provides examples of its implementation using actual recorded waveforms that are contaminated with these noise signals. An improvement (reduction) in the noise level is reported, as are suggestions for future implementation of this strategy.

Development of Multichannel Real Time Data Acquisition and Signal Processing System for Nervous System Analysis (다채널 실시간 신경신호 기록 및 신경계 분석을 위한 시스템의 개발)

  • 김상돌;김경환;김성준
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.469-475
    • /
    • 2000
  • 신경신호의 계측은 신경계의 연구에 필수적인 도구로 최근 반도체미세전극기술 등 수십, 수백개의 채널로부터 신경신호를 기록할 수 있는 방법들이 발달함에 따라 많은 수의 뉴런으로부터 신경 신호를 측정하여 컴퓨터로 그 신호를 처리할 수 있는 시스템의 필요성은 더욱 커지고 있다. 본 연구에서는 최대 16채널의 신경신호를 실시간에 측정하여 기록하고, 저장된 신호로부터 활동전위를 검출하며, 단일 뉴런들로부터의 신호를 분류하여 spike train의 형태로 저장한 뒤 여러 뉴런들간의 상관관계를 분석하기 위한 spike train 해석이 가능한 시스템을 개발하였다. 이 시스템은 보통사양의 PC이외에는 단지 신호획득보드만을 포함하여 다채널미세전극으로부터 뉴런의 신호를 측정, 증폭하여 호스트PC로 전송하고 저장하며 이로부터 활동전위를 검출하여 단일뉴런으로부터의 spike train으로 분류할 수 있다. 또한 저장된 spike train들로부터 신경회로망을 이루는 여러뉴런 들간의 관계를 분석하여 기능들이 시스템에 포함되어있다. 개발된 시스템을 사용하여 개구리 감각 신경의 신호를 실시간에 동시기록하여 활동전위을 검출하고 특징추출방법과 principal component analysis를 이용하여 분류한 뒤 spike train 해석을 수행하였다.

  • PDF

Characterization of Ionic Currents in Human Neural Stem Cells

  • Lim, Chae-Gil;Kim, Sung-Soo;SuhKim, Hae-Young;Lee, Young-Don;Ahn, Seung-Cheol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • The profile of membrane currents was investigated in differentiated neuronal cells derived from human neural stem cells (hNSCs) that were obtained from aborted fetal cortex. Whole-cell voltage clamp recording revealed at least 4 different currents: a tetrodotoxin (TTX)-sensitive $Na^+$ current, a hyperpolarization-activated inward current, and A-type and delayed rectifier-type $K^+$ outward currents. Both types of $K^+$ outward currents were blocked by either 5 mM tetraethylammonium (TEA) or 5 mM 4-aminopyridine (4-AP). The hyperpolarization-activated current resembled the classical $K^+$ inward current in that it exhibited a voltage-dependent block in the presence of external $Ba^{2+}$ (30 ${\mu}$M) or $Cs^+$ (3${\mu}$M). However, the reversal potentials did not match well with the predicted $K^+$ equilibrium potentials, suggesting that it was not a classical $K^+$ inward rectifier current. The other $Na^+$ inward current resembled the classical $Na^+$ current observed in pharmacological studies. The expression of these channels may contribute to generation and repolarization of action potential and might be regarded as functional markers for hNSCs-derived neurons.

Localization Estimation Using Artificial Intelligence Technique in Wireless Sensor Networks (WSN기반의 인공지능기술을 이용한 위치 추정기술)

  • Kumar, Shiu;Jeon, Seong Min;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.820-827
    • /
    • 2014
  • One of the basic problems in Wireless Sensor Networks (WSNs) is the localization of the sensor nodes based on the known location of numerous anchor nodes. WSNs generally consist of a large number of sensor nodes and recording the location of each sensor nodes becomes a difficult task. On the other hand, based on the application environment, the nodes may be subject to mobility and their location changes with time. Therefore, a scheme that will autonomously estimate or calculate the position of the sensor nodes is desirable. This paper presents an intelligent localization scheme, which is an artificial neural network (ANN) based localization scheme used to estimate the position of the unknown nodes. In the proposed method, three anchors nodes are used. The mobile or deployed sensor nodes request a beacon from the anchor nodes and utilizes the received signal strength indicator (RSSI) of the beacons received. The RSSI values vary depending on the distance between the mobile and the anchor nodes. The three RSSI values are used as the input to the ANN in order to estimate the location of the sensor nodes. A feed-forward artificial neural network with back propagation method for training has been employed. An average Euclidian distance error of 0.70 m has been achieved using a ANN having 3 inputs, two hidden layers, and two outputs (x and y coordinates of the position).