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Abstract: When recording single-unit responses from neural systems, a common problem is the accurate detection of spikes
(action potentials) in the presence of competing unwanted (noise) signals. While some sources of noise can be readily dealt
with through filtering or “template subtraction” techniques, other sources present a more difficult problem. In particular, noise
components introduced by power supplies, which contain harmonics of the power-line frequency, can be particularly
troublesome in that they can mimic the shape of the desired spikes. Thus, standard “template subtraction” techniques or
notch-filtering approaches are not appropriate. In this study, we propose the use of a novel template-subtraction scheme that
involves estimating the power-line noise waveform and using cross-correlation techniques to subtract them from the recordings.
This technique requires two key steps: (1) cross-correlation analysis of each recorded waveform extracts a robust
representation of the power-line noise waveform and (2) a second level of cross-correlation to successfully subtract that

representation from each recorded waveform.

This paper describes this algorithm and provides examples of its

implementation using actual recorded waveforms that are contaminated with these noise signals. An improvement (reduction)
in the noise level is reported, as are suggestions for future implementation of this strategy.
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INTRODUCTION

Biosignals are often contaminated by noises from
some sources which make the signal-to-noise ratio
(SNR) low. Therefore, post- or pre-processing for
removing noise and stimulus artifact is important in
the biosignal processing {1]. The acquisition of single-

unit (or single-fiber) action potentials from
experimental animal preparations is typically
complicated by several sources of electrical

contaminants that can make spike (action potential)
detection difficult. Physiological noise, such as
unwanted EKG and EEG signals are typically present,
although they usually present a tractable problem due
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to their relatively low amplitudes. Stimulus-induced
noise can be a significant problem in studies that
measure evoked responses. For example, in auditory
research, radiated energy from an acoustic driver

(earphone) can be picked up by the recording
micropipette. Unwanted signals from earphone
radiations, however, can often be reduced by

techniques as simple as electrical isolation. In some
cases, stimulus contaminants can be segregated from
the desired responses simply from the fact that the
response may be sufficiently delayed from the offset of
the stimulus contaminants. This can be the case
when relatively short-duration stimuli are employed.
In those instances, however, it may be particularly
important to avoid the use of restrictive, narrow-band,
filtering that can cause significant temporal “smearing”
and, thus, increasing the overlap of the stimulus
artifacts with the response. Another common
technique is the use of alternating-polarity stimulus
waveforms and summation of the responses evoked by
such stimuli, which should, in theory, result in the
cancellation of stimulus artifacts. This approach is
not always feasible, however, Also, in studies
involving electrically-evoked responses, electrical
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stimulus artifacts can be particularly problematic and
can necessitate the use of “template subtraction”
schemes, such as that described by [2].

Noise-reduction schemes can be categorized in
terms of “real-time” and “post-processing” techniques.
Real-time approaches include electrical isolation,
stimulus polarity alternation, filtering, and in some
cases, the subtraction of a stimulus-artifact template.
Post-processing schemes typically involve more
computationally intensive procedures or the need for
user decisions that make automated approaches
problematic. However, some post-processing schemes,
such as the one developed in the paper, could
theoretically be implemented in real time, given
sufficiently fast computational resources and algorithm
optimization. Indeed, with faster computer resources,
some “post-processing” schemes could be implemented
in an “on line” fashion.

One particularly difficult form of electrical
contamination is the presence of noise waveforms
introduced by power supplies and laboratory
equipment. The presence of digital (switching) power
supplies and nonlinear processes such as rectification
can introduce significant harmonic energy related to
the a.c. waveform of the power line. While the
fundamental frequency of this waveform (i.e., 50 Hz or
60 Hz) may not be a particular issue, the harmonics
may contain spectral energy similar to that present in
the desired (action potential) waveform. For that
reason, standard filtering approaches [3, 4] are not
appropriate. Furthermore, experimenters typically
make special efforts to ensure that power-line noise is
not synchronized with the stimulus, so that line-
induced noise components do not appear to be
causally linked to the stimulus. This, however,
results in the somewhat random distribution of line
noise components in the recorded signals. As neural
responses may also be randomly distributed across
time (e.g., in the case of spontaneously active neurons
or in the case of neural responses to noise-like stimuli),
the power-line harmonics may be difficult to
distinguish against random neural responses.

The nature of noise components generated by line
power therefore present a particular challenge that is
the subject of this paper. We present a method of
identifying unwanted signals that are related to
laboratory equipment (typically, line-voltage power
supplies) that is relatively computationally intensive
and thus is implemented as a post-processing scheme.
The procedures developed in this paper arose out of
our laboratory’s interest in recording single-unit
responses from the electrically stimulated auditory
nerve of mammals. Because many of our experiments
employ electrical stimuli that approximate the stimuli
delivered by cochlear prosthesis, our experimental
preparation may be subject to an additional source of
electrical contamination. In particular, as the tissue
is excited electrically, there is a greater probability that
the stimulation equipment will introduce power-line
related noise components through difficult-to-control
electric leakage paths.
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The auditory neural responses were recorded from
single nerve fibers of cats using monophasic current
pulses delivered by a monopolar intracochlear
electrode. Unlike some laboratories, which record
spike “events”, a standard procedure of our laboratory
is to record and store all “raw” response waveforms to
the mass storage device. As is typical for single-unit
research, multiple (repeated) responses from a given
fiber are obtained in order to assess response
properties such as firing probability, mean spike
latency, and spike jitter. The storage of the raw
response waveforms facilitates experimentation of
various post-processing schemes, such as that
described here. The procedure to reduce power-line
noise contaminants involves the wuse of cross-
correlation techniques to both identify the noise signal
and then to effectively subtract that signal from each
template.

METHOD AND MATERIALS

Animal Preparation

For the purposes of developing this noise-reduction
scheme, response waveforms from an acute cat
preparation were used. Details of the methodology for
animal preparation are previously described [2, 5]. All
experimental procedures were done with the subject
maintained at surgical levels of anesthesia. General
anesthesia was induced with ketamine (30 mg/kg) and
acepromazine (0.3 mg/kg). Atropine sulfate (0.04
mg/kg/12h) was given to reduce mucosal secretions.
Core body temperature was maintained by a
circulating water heating pad and drapes and vital

‘signs (Heart rate, blood oxygen saturation, expired C02

pressure and rectal temperature) were monitored
throughout the experiment. A standard posterior
fossa approach was used to expose the auditory nerve
and a cochleostomy was performed in the basal turn of
the cochlea using a surgical drill to provide access to
the scala tympani. A small Pt/Ir stimulating ball
electrode was placed in the scala tympani to provide
for the intracochlear delivery of electric current pulses.

Stimulus Presentation -

Stimuli were generated by custom software
controlling a 12 bit D/A converter. The positive output
of the current source was connected to the monopolar
stimulating electrode in the basal turn of the cochlea
and the negative output was connected to a needle
electrode placed in the forepaw. The stimuli were
biphasic rectangular pulses {duration 40 us/phase).
The inter-pulse interval (IPI) was set to 4 ms. A train of
75 electric pulses (total duration 300ms) was presented
in a sweep (5].
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Single Fiber Neural Response Recording

Standard micropipette techniques were used to
recording single-fiber responses [2]. The micropipette
was connected to an Axon Instruments Axoprobe
headstage and amplifier, which, in turn, was fed to a
6-pole low-pass filter (30 kHz cut-off frequency) and to
an A/D converter {sampling rate 100,000 samples/s).
The responses to a low-rate (250 pulses/s) train of
biphasic current pulses were recorded for 350 ms, so
that the each response waveform consisted of a 300 ms
epoch with responses to the electric pulses and a
subsequent 50 ms epoch without any electric pulses.
This post-train interval provided a stimulus-free
interval useful for evaluating the power-line noise
characteristics. As is typical for single-unit work,
multiple recordings were made in response to multiple
presentations of the stimulus pulse train. While this
is a standard means of obtaining neural response
statistics, it also facilitates the implementation of our
noise-reduction technique, as it provides multiple
“copies” of the electrical contamination signal, enabling
the algorithm to more effectively identify this signal. A
schematic diagram of the stimulus pulse train and the
recording epoch is shown in Fig. 1. All surgical and
experimental procedures were approved by the
University of Iowa Animal Care and Use Committee
and complied with the standards of the U.S. National
Institutes of Health.
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Fig. 1. Electric stimulation in each sweep. Total duration,
350 ms, included the stimulation dura tion and no stimulation
duration. Inter-pulse interval is 4ms with 40 pus/phase
biphasic stimulation.

Noise Reduction Protocol
General approach

The proposed reduction of electrical contaminants
produced by line-voltage components is premised upon

the notion that this unwanted signal is deterministic
and therefore has a well-defined waveform shape.
Thus, across the repeated recorded epochs, this noise
component, while not necessarily synchronized across
the multiple recorded epochs, can be identified by a
well-defined waveform. If this is the case, the cross-
correlation of two recorded epochs (each containing
this contaminant) should produce an identifiable peak
in the correlogram. By recording micropipette
potentials relatively free of neural responses, it should
therefore be possible to identify this noise waveform.
Furthermore, by performing multiple cross-correlations
across multiple recorded epochs, it should be possible
to not only identify this waveform, but through the
temporal alignment of their multiple instances, obtain
a robust copy, or template, of this noise signal.
Finally, this robust copy of the noise waveform can be
aligned, by again using cross-correlation, to the
instances of this noise that occur in each recorded
sweep and then subtracted from each sweep.

Noise Template

As seen in Fig. 2, the recorded responses included
spike (action potential) activity imbedded in a noisy
background. Closer examination of the noise (see inset
in Fig. 2. which shows greater temporal detail of the
noise signal) reveals a complex waveform with
harmonics related to the power-line (60 Hz) frequency.

Original data from single fiber neuron

1666 samples = 60Hz 1666 samples = 60Hz
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Fig. 2. The single fiber neural response in which the 60 Hz
characteristic peak noises were included. Total recording
duration is 350 msec ( 35,000 samples with 100,000
samples/sec ). [0 msec ~ 300 msec] : Electric stimulus and
[300 msec ~ 350 msec] : no stimulus

It could be analyzed using FFT and auto-correlation
which are usually used in detecting hidden periodicity
(Fig. 3). These noises had wide frequencies
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characteristics over the neural response's frequency
range as well as 60Hz. These unwanted noises were
presumably caused by a 60 Hz power supply and other
electric experimental equipment. The wide spectral
content of this noise signal makes it clear that
standard filtering techniques are not the most
appropriate means of reducing this noise. In this study,
we developed and applied a template subtraction
method to reduce this particular noise component.
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Fig. 3. Noise frequency analysis using (A) autocorrelation
and (B) FFT. These show that noise is composed with
complex waveforms which has wide frequency range as well
as 60Hz.

To produce a template (i.e., a robust representation)
of this noise signal, we treated it as a “desired” signal
and applied signal averaging to extract it from other
background noise components. This averaging
approach was needed to ensure that our subsequent
subtraction of the noise signal template did not result
in an appreciable increase in background noise
amplitude. The region of each sweep ranging from 300
ms to 350 ms (i.e., where no electric stimulus was
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presented) was used to extract this component. To
obtain a “grand average” or robust template of the
noise  signal, repeated cross-correlations were
performed iteratively to identify and “build” the grand-
average.

The averaging process, shown schematically Fig. 4,
was first performed between two sets of sampled points

(Si(k) and Si(fl) ) that were obtained from two sweeps

(iand i+1) of the 35 acquired sweeps and from the
iteration k. It is important to note that the desired
noise signal in these two sets of samples are arbitrarily
out of phase with each other, as they were not
recorded in a manner that synchronized this noise
signal with the recording epoch. It is thus necessary
to shift (or lag) one of the waveforms relative to the
other to align the noise signals prior to performing the
average. Cross-correlation provides a means of
determining the proper time shift. This process of
aligning and averaging two sets of samples was
repeated for other pairs of sets obtained from the 35
sets, completing the first iteration (k=1) of averaging
and producing a total of 18 averaged sets (with the 35th,
the last set, included as the 18t “average”). This
process was then repeated for a second (k=2) iteration,
further reducing the set to 9 averages, improving the
representation of the targeted noise signal. This
iterative process was performed a total of K=logz(35)
times until a single, grand, average was obtained.
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Fig. 4. Diagram showing the process of calculation of the
grand average template using no stimulus intervals in each
sweep. After K iterations of averages, S/ could be
calculated (see text for description).

The underlying computations of the above process
are now described. The cross-correlation of the two
sequences S\ and S!') was calculated according to

At Eq ().

one = sequence shifted by

Ati(k) represents the amount of lag by which one

sequence has been shifted to the left [6, 7].
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The maximum lag, (A

correlation coefficient, 0, ., (A[l_(k)) , maximum [8].

With this maximum lag, the next iteration was

calculated as:
S = (S,-(k) O +SE(t+ (AL 1 )/ 2 )

Through this iteration process, all 35 data sets
(from the 35 recorded sweeps) were used to finally

obtain the grand average template Sl(K) shown in Fig.

5. (A). Through the process of waveform alignment,
some samples (across the available 50 ms duration of
each original epoch) were lost so that the averaging
could be performed. In this case, the duration of the
grand average was approxXimately 30 ms, reflecting
some degree of loss.
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Fig. 5. (A) The result of a grand average template which
was calculated by Eq. (2). (B) The whole template with
duration of 700 msec was made using resampled template

As the duration of the grand average was
insufficient to cover the entire 350 ms epoch of each
original recorded sweep, necessitating the repeated
concatenation of the grand average with itself to form a
template long enough to extend across the 350 ms
recording epoch. Spectral analysis of our grand
average template, however, indicated that the period of
the noise signal was not an integer number of samples,
but instead had a period of 1,666.6667 samples.
Proper concatenation (in which the fundamental period
of the derived noise signal was not altered by this
sampling mismatch, Fig.6) required resampling of the
template such that

Sresampling,j+l (l) =ax Sresampling,j(i) + (1 - a) x Sresampling (l + 1)

where, S, =S¥ and a = 0.6667 0r0.3334 3)
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Fig. 6. Template resampling to make proper concatenation.
In experiment, the second data shifts with 0.6667 sample
time as the period of noise was not an integer number of
samples.

In the next step, we made the whole template, (2,
which has a total 700 ms periods which is long enough
to cover the any acquisition data set in our experiment
environment. The copy method was applied using Eq.
(4). According to the previous frequency analysis of
noises, it shows that the noise is modulated in 60 Hz
which is exactly frew = 1,666.6667 samples in 100kHz
A/D sampling. To avoid the non-integer period error,
we used the period of template samples as fi1=1,666 or
J2=1,667 alternatively. If not so, the truncated sample
intervals would have seen propagated.
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Q(l—*_(j; +f%)><]) = Sresampling,j (l)
where,i =1,2,---,(f, + f,) and j=0,1,---,32

(4)

Template Subtraction Using The Cross Correlation

For the subtraction between the whole template and
a response signal, we also should match the phases. It
was performed at the interval 300ms~350ms between

the response signal, Rj (l‘ ) , and the grand average

template, SI(K). The template SI(K) was shifted one

point in time along the response signal and the cross
correlation coefficient was recomputed for the
alignment. With this process, we found the best shift

(or lag) value, At IE for €} to subtract a response

signal with template.

RESULTS

We made the whole template from the data set #
145 of Cat D41. The data set comprised 35 sweeps. To
demonstrate the applicability of this template
subtraction algorithm, we measured the performance
of these template subtraction algorithms over the data
set # 140, #141 and also #145 of Cat D41. Fig. 5 and
Fig. 6 show the results of template subtraction. The
attenuated noise power within the no stimulus interval
(300 ms ~ 350 ms) was calculated by Eq. (5). This
shows how the noises are reduced before and after.

' (Attenuation) = 10 x log[(Powe )/(Power;, )] (5)

r_ouput

The results are plotted in Fig. 9. The mean of the
attenuated power was 10.15 % 0.67 (dB). This result
demonstrates the usefulness of the template
subtraction method as applied to single fiber neural
response and the efficiency of noise reduction which
might come from laboratory equipments. Fig. 10 also
shows the noise distribution before and after template
subtraction method in whole response range which
was applied to data set D41 #140 35 sweeps. The
average level of noise was decreased from 37.0 to 30.8
and standard deviation from 16.2 to 10.0. The
decrease of standard deviation can expect more
efficient for a spike detection process.
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Fig. 7. A example of template subtraction. The original data
is shown in (A) and the data after subtraction in (B). The
noises were decreased and removed.
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Fig. 8. (A) The original neural response data without
subtraction and (B) the result after template subtraction for
10 sweeps (data set #140, D41). The neural spike responses
were not changed. However, the overall noise level was
decreased.
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Fig. 9. An attenuated noise power after template subtraction
applied to 105 data sets. The mean of attenuated power is
10 dB.
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Fig. 10. Noise distribution before and after noise reduction in
whole recording range in data set D41 #140. The mean level
of noise fell off by around 20% and the standard deviation
which is used in threshold level for spikes was decreased by
38%.

DISCUSSION

In this study, we have used template subtraction
method to reduce the noises contaminated in single
fiber auditory neural responses. The whole template
which was calculated from the response data set #145

of Cat D41 was applied to other data set of Cat D41.
The experimental results show that our template
subtraction method using cross correlation is highly
effective in removing the noises. Although a notch filter
at a noise frequency or a low-pass filter at a relatively
high frequency can decrease the stimulus artifact, it
may also reduce and distort the shape of neuronal
spikes. If the template itself may contain neural
activity, then the template subtraction in noise
reduction will eliminate the neuronal signal [9].
However, we could overcome this limitation by using
the no stimulus interval for making the template.

In recent experiment, the amplitudes of noise level
were not varied. As this reason, our algorithm could
have a good performance. However, for the possibility
of noise amplitude variation, we should make an
additional algorithm which calculates the noise level
automatically and fixes an overall amplitude-ratio of
noise template. It will be studied in the next step.
Eventually, we will apply this algorithm as pre-
processing for spike detection which wuses the
parameter of background noise standard deviation.
Application of this method enables one to calculate the
firing rate with high reliability.
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