• 제목/요약/키워드: neural networks technique

검색결과 532건 처리시간 0.025초

재료 물성치의 불확실성을 고려한 포장구조체의 건전성 평가 (Integrity Assessment of Asphalt Concrete Pavement System Considering Uncertainties in Material Properties)

  • 이진학;김재민;김영상;문성호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.49-54
    • /
    • 2007
  • Structural integrity assessment technique for pavement system is studied considering the uncertainties among the material properties. The artificial neural networks technique is applied for the inverse analysis to estimate the elastic modulus based on the measured deflections from the FWD test. A computer code based on the spectral element method was developed for the accurate and fast analysis of the multi-layered soil structures, and the developed program was used for generating the training and testing patterns for the neural network. Neural networks was applied to estimate the elastic modulus of pavement system using the maximum deflections with and without the uncertainties in the material properties. It was found that the estimation results by the conventiona1 neural networks were very poor when there exist the uncertainties and the estimation results could be significantly improved by adopting the proposed method for generating training patterns considering the uncertainties among material properties.

  • PDF

인공신경망을 이용한 퇴적암의 압축강도 예측 (The Prediction of Compressive Strength of Sedimentary Rock using the Artificial Neural Networks)

  • 이상호;김동락;서인식
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.43-47
    • /
    • 2012
  • A evaluation for the strength of rock includes a lot of uncertainty due to existence of discontinuity surface and weakness plain in the rock mass, so essential test results and other data for the resonable strength analysis are absolutely insufficient. Therefore, a analytical technique to reduce such uncertainty can be required. A probabilistic analysis technique has mainly to make up for the uncertainty to investigate the strength of rock mass. Recently, a artificial neural networks, as a more newly analysis method to solve several problems in the existing analysis methodology, trends to apply to study on the rock strength. In this study the unconfined compressive strength from basic physical property values of sedimentary rock, black shale and red shale, distributed in Daegu metropolitan area is estimated, using the artificial neural networks. And the applicability of the analysis method is investigated. From the results, it is confirmed that the unconfined compressive strength of the sedimentary rock can be easily and efficiently predicted by the analysis technique with the artificial neural networks.

신경회로망과 유한요소법을 이용한 편측식 선형유도전동기의 최적설계에 관한 연구 (Optimum Design of Single-Sided Linear Induction Motor Using the Neural Networks and Finite Element Method)

  • 임달호;박승찬;박두진;장석명;이철직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1004-1006
    • /
    • 1993
  • A new method for the optimal design of a single-sided linear induction motor(SLIM) is presented. The method utilizes the neural networks and finite element method for optimizing the design parameters of SLIM. The finite element analysis is used to produce a variety of neural networks training data and the neural networks is used for optimizing the design parameters by sequential unconstrained minimization technique(SUMT). As a result, it is known that the novel method is very efficient and accurate as an optimization technique.

  • PDF

Combining cluster analysis and neural networks for the classification problem

  • Kim, Kyungsup;Han, Ingoo
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1996년도 추계학술대회발표논문집; 고려대학교, 서울; 26 Oct. 1996
    • /
    • pp.31-34
    • /
    • 1996
  • The extensive researches have compared the performance of neural networks(NN) with those of various statistical techniques for the classification problem. The empirical results of these comparative studies have indicated that the neural networks often outperform the traditional statistical techniques. Moreover, there are some efforts that try to combine various classification methods, especially multivariate discriminant analysis with neural networks. While these efforts improve the performance, there exists a problem violating robust assumptions of multivariate discriminant analysis that are multivariate normality of the independent variables and equality of variance-covariance matrices in each of the groups. On the contrary, cluster analysis alleviates this assumption like neural networks. We propose a new approach to classification problems by combining the cluster analysis with neural networks. The resulting predictions of the composite model are more accurate than each individual technique.

  • PDF

Logistic Model for Normality by Neural Networks

  • Lee, Jea-Young;Rhee, Seong-Won
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권1호
    • /
    • pp.119-129
    • /
    • 2003
  • We propose a new logistic regression model of normality curves for normal(diseased) and abnormal(nondiseased) classifications by neural networks in data mining. The fitted logistic regression lines are estimated, interpreted and plotted by the neural network technique. A few goodness-of-fit test statistics for normality are discussed and the performances by the fitted logistic regression lines are conducted.

  • PDF

정보데이터의 복원기법 응용한 실시간 하드웨어 신경망 (Realtime Hardware Neural Networks using Interpolation Techniques of Information Data)

  • 김종만;김원섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.506-507
    • /
    • 2007
  • Lateral Information Propagation Neural Networks (LIPN) is proposed for on-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed.

  • PDF

Improve Digit Recognition Capability of Backpropagation Neural Networks by Enhancing Image Preprocessing Technique

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.4-49
    • /
    • 2001
  • Digit recognition based on backpropagation neural networks, as an important application of pattern recognition, was attracted much attention. Although it has the advantages of parallel calculation, high error-tolerance, and learning capability, better recognition effects can only be achieved with some specific fixed format input of the digit image. Therefore, digit image preprocessing ability directly affects the accuracy of recognition. Here using Matlab software, the digit image was enhanced by resizing and neutral-rotating the extracted digit image, which improved the digit recognition capability of the backpropagation neural network under practical conditions. This method may also be helpful for recognition of other patterns with backpropagation neural networks.

  • PDF

신용 데이터의 이미지 변환을 활용한 합성곱 신경망과 설명 가능한 인공지능(XAI)을 이용한 개인신용평가 (A Personal Credit Rating Using Convolutional Neural Networks with Transformation of Credit Data to Imaged Data and eXplainable Artificial Intelligence(XAI))

  • 원종관;홍태호;배경일
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권4호
    • /
    • pp.203-226
    • /
    • 2021
  • Purpose The purpose of this study is to enhance the accuracy score of personal credit scoring using the convolutional neural networks and secure the transparency of the deep learning model using eXplainalbe Artifical Inteligence(XAI) technique. Design/methodology/approach This study built a classification model by using the convolutional neural networks(CNN) and applied a methodology that is transformation of numerical data to imaged data to apply CNN on personal credit data. Then layer-wise relevance propagation(LRP) was applied to model we constructed to find what variables are more influenced to the output value. Findings According to the empirical analysis result, this study confirmed that accuracy score by model using CNN is highest among other models using logistic regression, neural networks, and support vector machines. In addition, With the LRP that is one of the technique of XAI, variables that have a great influence on calculating the output value for each observation could be found.

Experimental Studies of Real- Time Decentralized Neural Network Control for an X-Y Table Robot

  • Cho, Hyun-Taek;Kim, Sung-Su;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.185-191
    • /
    • 2008
  • In this paper, experimental studies of a neural network (NN) control technique for non-model based position control of the x-y table robot are presented. Decentralized neural networks are used to control each axis of the x-y table robot separately. For an each neural network compensator, an inverse control technique is used. The neural network control technique called the reference compensation technique (RCT) is conceptually different from the existing neural controllers in that the NN controller compensates for uncertainties in the dynamical system by modifying desired trajectories. The back-propagation learning algorithm is developed in a real time DSP board for on-line learning. Practical real time position control experiments are conducted on the x-y table robot. Experimental results of using neural networks show more excellent position tracking than that of when PD controllers are used only.

백스테핑기법과 신경회로망을 이용한 적응 재형상 비행제어법칙 (Reconfigurable Flight Control Law Using Adaptive Neural Networks and Backstepping Technique)

  • 신동호;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.329-339
    • /
    • 2003
  • A neural network based adaptive controller design method is proposed for reconfigurable flight control systems in the presence of variations in aerodynamic coefficients or control effectiveness decrease caused by control surface damage. The neural network based adaptive nonlinear controller is developed by making use of the backstepping technique for command following of the angle of attack, sideslip angle, and bank angle. On-line teaming neural networks are implemented to guarantee reconfigurability and robustness to the uncertainties caused by aerodynamic coefficients variations. The main feature of the proposed controller is that the adaptive controller is designed with assumption that not any of the nonlinear functions of the system is known accurately, whereas most of the previous works assume that only some of the nonlinear functions are unknown. Neural networks loam through the weight update rules that are derived from the Lyapunov control theory. The closed-loop stability of the error states is also investigated according to the Lyapunov theory. A nonlinear dynamic model of an F-16 aircraft is used to demonstrate the effectiveness of the proposed control law.