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Abstract

In this paper, experimental studies of a neural network (NN) control technique for non-model based position control of the x-y table robot
are presented. Decentralized neural networks are used to control each axis of the x-y table robot separately. For an each neural network
compensator, an inverse control technique is used. The neural network control technique called the reference compensation technique (RCT)
is conceptually different from the existing neural controllers in that the NN controller compensates for uncertainties in the dynamical system
by modifying desired trajectories. The back-propagation learning algorithm is developed in a real time DSP board for on-line learning.
Practical real time position control experiments are conducted on the x-y table robot. Experimental results of using neural networks show
more excellent position tracking than that of when PD controllers are used only.
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1. Introduction

Recently, intelligence becomes one of the key issues in the
controller design of dynamical systems. Two main intelligent
tools are known as neural network and fuzzy logic.

Specially, neural networks have been used in many
applications such as pattern recognition of images and voices,
control of nonlinear systems, prediction of forecast and stock
markets, and so on. Specially, in the nonlinear system control
area, neural networks have become one of the powerful
nonlinear controllers that perform quite well to satisfy given
specifications. Their powerful characteristics such as a nonlinear
mapping capability, adaptation and learning capabilities are very
useful for controlling complicated systems which are very
difficult to model and control the dynamics of those due to their
highly nonlinear behaviors. Their ultimate goal is to minimize
the position tracking errors by compensating for uncertainties
caused from unknown system dynamics.

Another important aspect in neural network control is an on-
line control capability. On-line control when learning and
control happens at the same time is one of many important
issues within the learning control system area. One simple
learning structure is the direct inverse control [1,2]. Although
this scheme is simple, it is very sensitive to the stability. As a

modified scheme, the pre-fiiter type neural network structure has
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been proposed[3]. To have the on-line neural network learning
control capability, the back-propagation algorithm should be
satisfied with obtaining the proper gradient functions. The
difficulty of driving gradient functions yields a variety of off-
line learning control schemes [2].

In this framework, a few on-line learning algorithms for
neural network control systems have been proposed. One
famous learning algorithm is the feedback-error learning
structure proposed by [4]. It is an inverse control structure that
identifies the inverse of the system dynamics at the end of a
learning process. Another kind of on-line learning schemes is to
tune PID controller gains adaptively. When the system dynamics
are time-varying, pre-determined controllers' gains result in poor
performances in tracking [5,6].

The controller gains should be modified appropriately with
respect to system variations. Ultimately, they have the same
goals to minimize errors, but the objective functions are set
differently and the corresponding back-propagation algorithms
are differently derived. Some theoretical foundations of neural
network control have been analyzed based on the Lyapunov
stability of position and weight error bounds with respect to
bounded uncertainties, and obtained good results in some
convergence ranges [7-11].

Here we are using a similar learning structure to the feedback
error learning structure, but the difference comes when the
compensation happens at the different location [4]. The
presented inverse control technique called the reference
compensation technique (RCT) is conceptually different from
the existing inverse controllers. A neural network does control
the inverse of the plant dynamics by doing that the NN
controller compensates for uncertainties in the dynamical system
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by modifying desired trajectories. This provides us with a great
advantage of handling the plant that is controlled by prefixed
controller gains resulting in poor performances due to system
dynamic changes or other nonlinear effects. Without modifying
the predetermined controller gains, the neural network can
compensate for uncertainties by closing another outer loop.

As an extension of our previous researches on the neural
network control, the decentralized neural network control
scheme is newly proposed [12, 13]. Focusing on experimental
studies, tracking performances between PD controllers and
neural networks are compared. Different from multi-joint robot
table robot has the structural
characteristics of which x and y axes are very much decoupled.

manipulators, the x-y

Assuming that the x-y table robot moves slowly, coupling
effects of two axes are further minimized and the control
structure can be decoupled. However, although the x-y table
robot is a likely decoupled system, coupled nonlinear
uncertainties are still present. To solve this problem, each axis is
controlled separately with a separate neural network controller.
To study an on-line control of neural networks, the cost effective
x-y table robot was built as a test-bed. Since the cost of building
the x-y table is quite effective, the accuracy of position control
depends on the structure of the robot and the resolution of
positional sensors such as optical encoders.

To achieve on-line learning, a faster calculation of a neural
network learning algorithm is required. The DSP board is used
for a calculation of the back-propagation algorithm. Interfacing
hardware between the DSP system and motor drivers for the x-y

table robot was implemented.

2. PD Control of x-y Table Robot

The dynamic equation of an x-y table robot in the Cartesian
space coordinates is given by

D(z)z+C(z,2)z+ F,(z) = F N

where the vectors z,é,é are the 2 x 1 displacement such that
z=[xy]", velocity, and acceleration of an each axis of the X-y
table robot, respectively; D(z) is a 2 x 2 symmetric positive
definite inertia matrix; C(z,z)z is a 2 x 1 vector of Coriolis
and centrifugal torques and F is a 2 x 1 vector of actuator
torques; F, (2) is a 2 x 1 vector representing Coulomb
friction and viscous friction forces : F, (2 =ksgn(z)+k,z.

In most practical cases, since it is difficult to know the robot
dynamic model exactly, it is advised to implement non-model
based control schemes. The PD control compensation for a robot
dynamic control has been studied in many papers because of its
simplicity and the guaranteed stability [14]. The desired PD
control law is composed of position and velocity displacements
such as
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F=K,e+K,e, )

Fig. 1. Control Block Diagram

where e=z,-z, e=z,—z, and K,,K, are PD controller
gains.
Combining equation (1) and (2), we have a closed loop error

equation as follows
Det+K,e+K,e=Dz+Cz+F,. (3)

Multiplying both sides by D' yields the second order error
equation as

e+ DK e+ DK e=D"(Dz,+Cz+ F,). e

Clearly, it is easy to control the x-y table robot since the
inertia matrix D can be approximately a diagonal matrix. On the
left side of equation (4), an independent axis control can be
applied. With the help of high feedback gains, we can achieve a
better tracking performance as long as the closed loop system is
stable since coupling effects due to the other axis motion are
minimal compared with those of other robot manipulators [15].
When the x-y table robot moves slowly, the effects of Coriolis
and centrifugal forces become also minimal. Then an x axis
control equation becomes a SISO system and can be decoupled
as follows:

em%eﬁi—’jex :d%(dxxﬁfﬁ), %)
where d, is an X axis inertia component of D and [, is the
friction component in x axis. In the similar way, a y axis control
equation can be represented as a SISO system.

However, in the practical system, there should be a saturation
limit of motor torque for protecting motors from being driven
with a large load torque. Therefore, the controller gains are
practically limited. In addition, nonlinear uncertainties such as
frictions, backlashes, and belt tension are present to effect
system performances. So, the proposed idea is to use a neural
network as an auxiliary controller to improve the control
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performance of a standard PD controller by canceling out those
uncertainties.

3. Neural Network Compensation Technique

A robot control scheme is presented here as depicted in
Figure 1. The basic control concept of this scheme is that the
NN controller acts as an inverse of the robot dynamics.
Compensation is done at the trajectory level and those
compensating signals are amplified through PD controller gains.
If we have a PD controller given in (2), neural network outputs
are added to the reference trajectory zd,éd .

We have the following control law:

F=K,(e+®)+K,(e+®,), ©)

where @, @, are 2 x 1 output vectors of two distinguished
neural networks. Combining (1) and (6) yields

K,e+Kye=Dz+Cz+ F, —(K,®, + K®). (7

Denoting A=Dz+Cz+ F, and ¥Y=K,0,+K, @, yields
the closed loop dynamic equations as follows:

Kye+Ke=A-V . ®)

At convergence, when performance specifications are

satisfied, the ideal outputs of neural networks become
compensating signals of uncertain terms.
AzV¥ 9

So, we can achieve that equation (8) becomes zero. This
means that the neural network identifies the inverse dynamics of
the system.

For an x axis control, since we implemented the system based
on the assumption that two axes are separately controllable,
neural network outputs become at the convergence

(10)

ko + k. =d xrext f,

where ¢,4,, are neural network outputs of an x axis.
For y axis, it can be represented in a similar way.

4. Learning Algorithms

Our goal is on-line learning and control to minimize
positional errors of the dynamical system, specially the x-y table
robot within a certain range of accuracies without a pre-learning
step. To develop the back-propagation algorithm, there are two
methods to be considered: off-line learning and on-line learning.
These methods result from how to form the objective functions

to be minimized. The ultimate goal of both methods is same,
however their implementations are different.

Here we implement the on-line learning algorithm based on
the modified system error. Careful selection of a training signal
is required to satisfy the gradient function in the back-
propagation algorithm.

xdes)ve ([)

X e (11}
Kasire (l - 2) T Py
Lreai (f) ©

X (1)
Xoa(t—2)

Fig. 2 Neural Network Structure for an X Axis

Since the x-y table system is a likely decoupled system, it is
better to use two neural networks separately for x and y axis. A
centralized neural network has been used for highly nonlinear
robot manipulators [16]. In the paper [16], effects of number of
hidden units, learning rate, and momentum coefficient have
been investigated by extensive simulation studies. Another
reason of using decoupled neural network structure is to reduce
the number of weights in neural network. For a centralized
neural network, the number of inputs becomes double. This
yields the increment of the number of hidden units and total
number of weights.

The multi-layer feed-forward neural network (FFNN) and the
back-propagation(BP) updating algorithm are used. They are
composed of an input buffer, a non-linear hidden layer and an
output layer as shown in Figure 2. Inputs are selected as delays
of desired trajectories and actual trajectories not only to give
dynamic characteristics to neural networks, but also to prevent
neural networks from generating abruptly changed signals at the
output nodes. The nonlinear functions used for hidden units and
output units are fanh(x) function that is bounded by =#1. The
weight updating law minimizes the objective function E(e,e)
for each axis which is a function of position tracking errors.

Defining v, =k, e.+k e

pxx

in (8) as a training signal of the x
axis, the neural network controller simplifies (8) as follows:

V. =0, =4, (1D

where &, is an x axis dynamic element of the dynamic
equation of the x-y table, A in(8)and ¢ =k, ¢, +k ¢ .In

pxt px

the similar way, for the y axis

v, =6,-4,. (12)

¥y ¥y

where &, isay axis dynamic element of the dynamic equation
of the x-y table, A in(8)and ¢, =k, ¢, +k,4, . Namely, the
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unknown dynamic equation of the x-y table, A can be
and J,.
The weight updating law minimizes the objective function E

decoupled into unknown dynamic equations of &,

which is a quadratic function of the training signal v where v is a
control input from a PD controller for each axis.
The objective function for both neural networks is defined as

Ezlvz,

(13)
where v is either v, or v, . Differentiating the objective
function with respect to the weight w and applying a chain rule
yields the gradient of  as follows:

OF_oEdv_ ov

= : (14)
ow oOvow  ow

A problem here is to find the partial derivative of S—V . Since

W
i = _%% making use of (11) or (12) the gradient becomes
ow ow
OE o Y) og
—=—v—L=—k,—L+k —L], 15
v aw g TR, (3

where ¢, and ¢, are outputs of neural networks. The

o4, 04, ) :
gradient B can be obtained easily. The BP update rule
W

for the weights with a momentum term is given as

Aw(t) = —ﬂv% +aAw(t-1). (16)
ow

The stability analysis has been well organized in the paper
[7.8]

5. Experimental Studies

5.1 Experimental setups

The experimental setup for the x-y table robot system is
shown in Figure 3. The overall system setup is composed of
three parts: an x-y table robot, the DSP system, and an interface
PC. Each axis is actuated by a 5.2:1 reduction geared type DC
motor to generate a faster torque. The DC motors are driven by
their own drivers commanded from the DSP board mounted in
the PC. The DSP board is used to compute the neural network
learning algorithm in real time for two decentralized neural
compensators, which require a huge calculation time. The
overall sampling time is about 1 KHz. Sensing encoder signals,
calculating position errors, processing the back propagation
algorithm, and generating torques can be done within one
sample time.

The torque from DC motors is transferred through timing
belts. Since the x axis is placed on the y axis with a guide by a
rail, the movement in the y axis direction is effected by the
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whole x axis frame movement. Backlash due to loose tension of
the timing belt and imbalance caused from an actuation by one
side motor are considered as unknown uncertainties.

Fig. 3. Experimental Setups

5.2 Experimental results

For the experiment, the x-y table is commanded to move the
circular trajectory with a 0.25m diameter. In order for the robot
to complete a circular trajectory, it takes about 6.5 seconds. First,
a tracking control performance with a PD controller only is
tested. The PD controller gains are selected as K, =57 fora
low gain for both axes and k, =1 for the x axis, &, =2 for
the y axis. The reason for different setting of controller gains is
that the y axis is heavier than the x axis. The position tracking
errors are clearly shown in Figure 4. The circular tracking offset
error is due to less torques generated from the low PD controller.
And the irregular shape of circle tracking is due to other
dynamical effects.

Next, the neural controller with a pre-specified PD gain
controller is used to draw the same circular trajectory. With the
help of a fast computing power of the DSP system, on line
learning is possible without a pre-learning step. For the neural
network controllers, the learning rates are optimized as 0.005 for
low gains. The neural network has a 6-6-2 two layered structure.
As shown in Figure 2, it has 6 inputs, 6 hidden units, and 2
output units.

Positional delayed data are used as inputs. The number of
hidden units is optimized by trial and error process. We did not
see any difference in performance, even worse when more than
6 hidden units are used. The effects of the number of hidden
units, initial weight values, and input data type of neural
network on the position tracking performance of the robot
manipulators have been reported in [16]. The momentum terms
are selected as 0.3 for both neural networks in all cases.

The tracking result of using neural networks shown in Figure
5 is excellent compared with that of Figure 4. The plot shown in
Figure 5 is after the convergence of 2 trials of repeating the
same circular trajectory. The corresponding tracking plot for
each axis is shown in Figure 6. Since the plot scale is somewhat
big, tracking errors cannot be distinguished from the figures.

One of neural compensating signals along with outputs of PD
controllers is plotted in Figure 7. Those controllers' output
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signals are captured just before they are fed into PWM motor
drivers from the DSP board. The outputs ¢

.8, from neural
networks are plotted which compensate at positional trajectories.
The neural network output signals are bounded by +1. The
output of the y axis neural network control shows more
oscillatory behavior than that of the x axis neural network
controller. This is because the movement of y axis has to control
x axis as well. Another interesting point is that PD controller
outputs are immediately minimized as neural network outputs
become larger. This is because neural networks take over the
control and become dominant in a very short time. The
interesting point is that the shape of NN compensating signals in
Figure 7 is similar to the desired sinusoidal function.

Another experiment of tracking the letter N trajectory as
shown in Figure 8 has been conducted. The overall traveling
time for writing the letter N takes 20 seconds. In this case, quite
high P gain just before motor saturation condition is used. The
proportional gain values are 600 and 700 for x axis and y axis,
respectively. The derivative gains 0.6 and 0.8 for x axis and y
axis, respectively, which is relatively small. Tracking
performances of PD controllers for x and y axis are shown in
Figures 9 and 10, respectively. Even though tracking errors are
quite small compared with those of when low PD gains are used,
we see that offset errors in x and y axis tracking. The offset error
of y axis tracking is relatively larger. The performances of using
neural network controllers are shown in Figures 11 and 12. We
clearly see that tracking errors are further minimized to zero.
Overshoots are observed at turning points in both cases.

During the experiments, we have found that there is an
accuracy limit of sensing data from optical encoders. Optical
encoders are mounted on the rotating axis, not at the motor axis
directly. This yields a less resolution resulting in small tracking
errors.

Circular Trajactory for Low Gain PD Control
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7. Conclusion

Experimental studies of the neural network control technique
for a non-model based x-y table robot centrol are presented. Due
to the decoupled structure of the x-y table robot, decentralized
neural networks are used to compensate for uncertainties in
system dynamics. Experimental studies on the circular trajectory
tracking of the x-y table robot showed that neural network
controller works extremely well compared with those of PD
controllers only. We have increased P gains just before the
saturation to have the better performances of PD controllers.
Experimental results also confirm that the RCT as a neural
network control algorithm works quite well regardless of values
of the controller gains.

These results show us that the extension of the RCT algorithm
application to other PD or PID controlled non-model based
systems can be possible.
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